
Elastic Cloud Storage (ECS)
Version 3.0

Data Access Guide
302-003-221

04

Copyright © 2013-2017 EMC Corporation All rights reserved.

Published January 2017

Dell believes the information in this publication is accurate as of its publication date. The information is subject to change without notice.

THE INFORMATION IN THIS PUBLICATION IS PROVIDED “AS-IS.“ DELL MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND

WITH RESPECT TO THE INFORMATION IN THIS PUBLICATION, AND SPECIFICALLY DISCLAIMS IMPLIED WARRANTIES OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. USE, COPYING, AND DISTRIBUTION OF ANY DELL SOFTWARE DESCRIBED

IN THIS PUBLICATION REQUIRES AN APPLICABLE SOFTWARE LICENSE.

Dell, EMC, and other trademarks are trademarks of Dell Inc. or its subsidiaries. Other trademarks may be the property of their respective owners.

Published in the USA.

EMC Corporation
Hopkinton, Massachusetts 01748-9103
1-508-435-1000 In North America 1-866-464-7381
www.EMC.com

2 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

9

11

S3 13

Introduction to Amazon S3 Support in ECS 15
Amazon S3 API support in ECS... 16

S3 Supported Features 17
S3 API Supported and Unsupported Features... 18

S3 Extensions 21
S3 Extensions...22
Byte range extensions.. 22

Updating a byte range within an object..22
Overwriting part of an object...23
Appending data to an object.. 24
Reading multiple byte ranges within an object............................... 25

Retention... 26
Lifecycle (expiration) and retention...27

File system enabled.. 27

S3 Metadata Search Extension 29
Use Metadata Search...30
Assign metadata index values to a bucket.. 30
Assign metadata to objects using the S3 protocol...................................... 33
Use metadata search queries..34
Using Metadata Search from the ECS Java SDK39
ECS system metadata and optional attributes..39

Create and Manage Secret Keys 41
Create and manage secret keys..42
Create a key for an object user...42

Generate a secret key from the ECS Portal...................................42
Create an S3 secret key using the ECS Management REST API....42

Create an S3 secret key: self-service... 43
Working with self-service keys.. 44

Authenticating with the S3 service 47
Authenticating with the S3 service...48

Java Client Access 51
Use SDKs to access the S3 service.. 52

Figures

Tables

Part 1

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

CONTENTS

Elastic Cloud Storage (ECS) 3.0 Data Access Guide 3

Using the Java Amazon SDK..52
Java SDK client for ECS.. 54

OpenStack Swift 57

Introduction to OpenStack Swift support in ECS 59
OpenStack Swift API support in ECS... 60

Swift Supported Features 61
OpenStack Swift supported operations..62

Swift Extensions 65
Swift API Extensions.. 66
Updating a byte range within an object.. 66
Overwriting part of an object..67
Appending data to an object...68
Reading multiple byte ranges within an object..69

Authentication 71
OpenStack Swift Authentication.. 72

Create Swift users at the ECS Portal...72
OpenStack Version 1 authentication .. 73
OpenStack Version 2 authentication...75
Authentication using ECS Keystone V3 integration.....................................77

Configure ECS to authenticate keystone users..............................78

Authorization 79
Authorization on Container...80

EMC Atmos 83

Introduction to EMC Atmos support in ECS 85
EMC Atmos API support in ECS... 86

Atmos Supported Features 87
Supported EMC Atmos REST API Calls..88
Unsupported EMC Atmos REST API Calls.. 89
Subtenant Support in EMC Atmos REST API Calls.....................................90

Atmos API Extensions 93
API Extensions... 94

Appending data to an object.. 94

CAS 97

Setting up CAS support in ECS 99
Setting up CAS support in ECS...100

Part 2

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Part 3

Chapter 13

Chapter 14

Chapter 15

Part 4

Chapter 16

CONTENTS

4 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

Cold Storage... 100
Compliance.. 101

Platform hardening and Compliance...102
Compliance and retention policy.. 102
Compliance agent...103

CAS retention in ECS..104
Advanced retention for CAS applications: event-based retention, litigation
hold, and the min/max governor... 106
Set up namespace retention policies..112
Create and set up a bucket for a CAS user.. 113
Set up a CAS object user... 114
Set up bucket ACLs for CAS..115
ECS Management APIs that support CAS users.. 117
Content Addressable Storage (CAS) SDK API support.............................. 118

ECS Management API 119

Introduction to the ECS Management REST API 121
ECS Management REST API... 122

Authentication with the ECS Management Service 123
Authenticate with the ECS Management REST API.................................. 124

Authenticate with AUTH-TOKEN .. 124
Authenticate with cookies.. 125
Logout..126
Whoami.. 126

ECS Management REST API Summary 129
ECS Management REST API summary..130

HDFS 135

What is ECS HDFS? 137
What is ECS HDFS?..138
Configuring Hadoop to use ECS HDFS ...139
ECS HDFS URI for file system access...140
Hadoop authentication modes...140

Accessing the bucket as a file system... 141
Bucket Custom Group ACLs and Default Group............................ 141
Hadoop superuser and supergroup... 142
Multi-protocol (cross-head) access... 142
Hadoop Kerberos authentication mode...143
Proxy user.. 143
Equivalence user.. 143
SymLink support.. 144

Migration from a simple to a Kerberos Hadoop cluster.............................. 144
File system interaction.. 144
Supported and unsupported Hadoop applications..................................... 145

Create a bucket for the HDFS filesystem 147
Create a bucket for HDFS using the ECS Portal....................................... 148

Part 5

Chapter 17

Chapter 18

Chapter 19

Part 6

Chapter 20

Chapter 21

CONTENTS

Elastic Cloud Storage (ECS) 3.0 Data Access Guide 5

Set custom group bucket ACLs..150
Set the bucket ACL permissions for a user................................... 151

Example Hadoop and ECS bucket permissions.. 152

Use Hortonworks Ambari to set up Hadoop with ECS HDFS 155
Deploying a Hortonworks cluster with Ambari...156
Download Ambari.. 156
Download the ECS HDFS Client Library.. 156
Set up a local repository from which to deploy the ECS Client Library......157
Install the Ambari server..157
Enable the Ambari Hadoop ECS stack...158
Install the Ambari Agent Manually... 158
Install Hadoop .. 159

Configure ECS HDFS integration with a simple Hadoop cluster
163
Configure ECS HDFS Integration with a simple Hadoop cluster................ 164
Plan the ECS HDFS and Hadoop integration... 164
Obtain the ECS HDFS installation and support package............................165
Deploy the ECS HDFS Client Library...165
Edit Hadoop core-site.xml file... 167
Edit HBASE hbase-site.xml... 170
Restart and verify access...171

Configure ECS HDFS integration with a secure (Kerberized)
Hadoop cluster 173
Integrate secure Hadoop cluster with ECS HDFS174
Plan migration from a simple to a Kerberos cluster....................................174
Map group names..175
Configure ECS nodes with the ECS Service Principal............................... 175
Secure the ECS bucket using metadata.. 179

Load metadata values to ECS using the Management REST API..182
Edit core-site.xml..183
Restart and verify access..186

Guidance on Kerberos configuration 189
Guidance on Kerberos configuration... 190

Set up the Kerberos KDC... 190
Configure AD user authentication for Kerberos.............................191

Configure one or more new ECS nodes with the ECS Service Principal.... 193

Troubleshooting 197
Troubleshooting.. 198
Verify AD/LDAP is correctly configured with secure Hadoop cluster........ 198
Restart services after hbase configuration..199
Pig test fails: unable to obtain Kerberos principal......................................199
Permission denied for AD user.. 199
Permissions errors.. 199
Failed to process request... 203
Enable Kerberos client-side logging and debugging.................................. 203
Debug Kerberos on the KDC...204
Eliminate clock skew.. 204

Chapter 22

Chapter 23

Chapter 24

Chapter 25

Chapter 26

CONTENTS

6 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

Hadoop core-site.xml properties for ECS HDFS 205
Hadoop core-site.xml properties for ECS HDFS.......................................206

Sample core-site.xml for simple authentication mode..................209

Secure bucket metadata example 211
Secure bucket metadata... 212

Chapter 27

Chapter 28

CONTENTS

Elastic Cloud Storage (ECS) 3.0 Data Access Guide 7

CONTENTS

8 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

Enable Compliance on a new namespace in the ECS Portal...................................... 103
Retention options for CAS buckets... 107
EBR scenarios... 109
Litigation Hold scenarios.. 111
New Retention Policy.. 112
Retention policies for a namespace..113
CAS settings for object users.. 114
Edit bucket ACL...115
Bucket ACLs Management.. 116
ECS HDFS integration in a Hadoop cluster..138

1
2
3
4
5
6
7
8
9
10

FIGURES

Elastic Cloud Storage (ECS) 3.0 Data Access Guide 9

FIGURES

10 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

Supported S3 APIs.. 18
Additional features.. 19
Unsupported S3 APIs... 20
OpenStack Swift supported calls..62
OpenStack Swift unsupported calls..63
Supported Atmos REST API calls... 88
Unsupported Atmos REST API calls... 89
Object API Extensions.. 94
Requirements for regular and cold archives compared..100
ECS Management API resources for retention..105
CAS API functions for event-based retention... 109
CAS API functions for litigation hold.. 111
Bucket ACLs.. 116
Bucket ACL groups.. 117
ECS Management REST API- methods summary..130
Example bucket permissions for filesystem access in simple mode........................... 153
Example bucket permissions for filesystem access in Kerberos mode....................... 154
ECS HDFS configuration prerequisites..164
ECS HDFS Client Library.. 165
core-site.xml locations.. 167
hbase-site.xml locations.. 170
Location of core-site.xml files... 183
Hadoop core-site.xml properties.. 206

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

TABLES

Elastic Cloud Storage (ECS) 3.0 Data Access Guide 11

TABLES

12 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

PART 1

S3

Chapter 1, "Introduction to Amazon S3 Support in ECS"

Chapter 2, "S3 Supported Features"

Chapter 3, "S3 Extensions"

Chapter 4, "S3 Metadata Search Extension"

Chapter 5, "Create and Manage Secret Keys"

Chapter 6, "Authenticating with the S3 service"

Chapter 7, "Java Client Access"

S3 13

S3

14 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

CHAPTER 1

Introduction to Amazon S3 Support in ECS

l Amazon S3 API support in ECS.. 16

Introduction to Amazon S3 Support in ECS 15

Amazon S3 API support in ECS
This part describes ECS support for the Amazon S3 API.

The Amazon S3 Object Service is made available on the following ports.

Protocol Ports

HTTP 9020

HTTPS 9021

The following topics describe the support for the S3 API, the extension provided by
ECS, and describe how to authenticate with the service and how to use SDKs to
develop clients to access the service:

l S3 API Supported and Unsupported Features on page 18

l S3 Extensions on page 22

l Use Metadata Search on page 30

l Create and manage secret keys on page 42

l Authenticating with the S3 service on page 48

l Use SDKs to access the S3 service on page 52

Some aspects of bucket addressing and authentication are specific to ECS. If you
want to configure an existing application to talk to ECS, or develop a new application
that uses the S3 API to talk to ECS, you should refer to the following topic:

l Administrators Guide: Set the Base URL

Introduction to Amazon S3 Support in ECS

16 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

https://community.emc.com/docs/DOC-53956

CHAPTER 2

S3 Supported Features

l S3 API Supported and Unsupported Features...18

S3 Supported Features 17

S3 API Supported and Unsupported Features
ECS supports a subset of the Amazon S3 REST API.

The following sections detail the supported and unsupported APIs:

l Supported S3 APIs on page 18

l Unsupported S3 APIs on page 19

Supported S3 APIs
The following table lists the supported S3 API methods.

Table 1 Supported S3 APIs

Feature Notes

GET service ECS supports marker and max-keys parameters to enable
paging of bucket list.

GET /?marker=<bucket>&max-keys=<num>

For example:

GET /?marker=mybucket&max-keys=40

DELETE Bucket

DELETE Bucket cors

DELETE Bucket lifecycle Only the expiration part is supported in lifecycle. Policies
related to archiving (AWS Glacier) are not supported.
Lifecycle is not supported on filesystem-enabled buckets.

GET Bucket (List Objects)

GET Bucket cors

GET Bucket acl

GET Bucket lifecycle Only the expiration part is supported in lifecycle. Policies
related to archiving (AWS Glacier) are not supported.
Lifecycle is not supported on filesystem-enabled buckets.

GET Bucket Object versions

GET Bucket versioning

HEAD Bucket

List Multipart Uploads

PUT Bucket

PUT Bucket cors

PUT Bucket acl

S3 Supported Features

18 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

Table 1 Supported S3 APIs (continued)

Feature Notes

PUT Bucket lifecycle Only the expiration part is supported in lifecycle. Policies
related to archiving (AWS Glacier) are not supported.
Lifecycle is not supported on filesystem-enabled buckets.

PUT Bucket versioning

DELETE Object

Delete Multiple Objects

GET Object

GET Object ACL

HEAD Object

PUT Object Supports chunked PUT

PUT Object acl

PUT Object - Copy

OPTIONS object

Initiate Multipart Upload

Upload Part

Upload Part - Copy

Complete Multipart Upload ECS returns an ETag of "00" for this request. This differs
from the Amazon S3 response.

Abort Multipart Upload

List Parts

Table 2 Additional features

Feature Notes

Pre-signed URLs ECS supports the use of pre-signed URLs to enable users to
be given access to objects without needing credentials.

More information can be found here.

Chunked PUT PUT operation can be used to upload objects in chunks.
Chunked transfer uses the Transfer-Encoding header
(Transfer-Encoding: chunked) to specify that content will be
transmitted in chunks. This enables content to be sent before
the total size of the payload is known.

Unsupported S3 APIs
The following table lists the unsupported S3 API methods.

S3 Supported Features

S3 API Supported and Unsupported Features 19

http://docs.aws.amazon.com/AmazonS3/latest/dev/PresignedUrlUploadObject.html

Table 3 Unsupported S3 APIs

Feature Notes

DELETE Bucket policy

DELETE Bucket tagging

DELETE Bucket website

GET Bucket policy

GET Bucket location ECS is only aware of a single virtual data center.

GET Bucket logging

GET Bucket notification Notification is only defined for reduced redundancy feature in
S3. ECS does not currently support notifications.

GET Bucket tagging

GET Bucket requestPayment ECS has its own model for payments.

GET Bucket website

PUT Bucket policy

PUT Bucket logging

PUT Bucket notification Notification is only defined for reduced redundancy feature in
S3. ECS does not currently support notifications.

PUT Bucket tagging

PUT Bucket requestPayment ECS has its own model for payments.

PUT Bucket website

Object APIs

GET Object torrent

POST Object

POST Object restore This operation is related to AWS Glacier, which is not
supported in ECS.

S3 Supported Features

20 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

CHAPTER 3

S3 Extensions

l S3 Extensions.. 22
l Byte range extensions..22
l Retention... 26
l File system enabled.. 27

S3 Extensions 21

S3 Extensions
ECS supports a number of extensions to the S3 API.

The extensions and the APIs that support them are listed below.

l Byte range extensions

l Retention extension

l File system enabled extension

l Metadata search extension

Byte range extensions

The following byte range extensions are provided:

l Updating a byte range within an object on page 22

l Overwriting part of an object on page 23

l Appending data to an object on page 24

l Reading multiple byte ranges within an object on page 25

Updating a byte range within an object
An example of using the ECS API extensions to update a byte range of an object is
provided below.

First do a GET request on the object named object1 located in bucket1 to review
the object. object1 has the value The quick brown fox jumps over the
lazy dog.

GET /bucket1/object1 HTTP/1.1
Date: Mon, 17 Jun 2013 20:04:40 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:9qxKiHt2H7upUDPF86dvGp8VdvI=
Accept-Encoding: gzip, deflate, compress

HTTP/1.1 200 OK
Date: Mon, 17 Jun 2013 20:04:40 GMT
Content-Type: application/octet-stream
Last-Modified: Mon, 17 Jun 2013 20:04:28 GMT
ETag: 6
Content-Type: application/json
Content-Length: 43

The quick brown fox jumps over the lazy dog.

Now you want to update a specific byte range within this object. To do this, the Range
header in the object data request must include the start and end offsets of the object
that you want to update.
The format is: Range: bytes=<startOffset>-<endOffset>

S3 Extensions

22 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

In the example below, the PUT request includes the Range header with the value
bytes=10-14 indicating that bytes 10,11,12,13,14 are to be replaced by the value sent
in the request. Here, the new value green is being sent.

PUT /bucket1/object1 HTTP/1.1
Content-Length: 5
Range: bytes=10-14
ACCEPT: application/json,application/xml,text/html,application/
octet-stream
Date: Mon, 17 Jun 2013 20:15:16 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:xHJcAYAEQansKLaF+/4PdLBHyaM=
Accept-Encoding: gzip, deflate, compress

green

HTTP/1.1 204 No Content
ETag: 10
x-amz-id-2: object1
x-amz-request-id: 027f037c-29ea-4670-8670-de82d0e9f52a
Content-Length: 0
Date: Mon, 17 Jun 2013 20:15:16 GMT

When reading the object again, the new value is now The quick green fox
jumps over the lazy dog. (The word brown has been replaced with green.)
You have updated a specific byte range within this object.

GET /bucket1/object1 HTTP/1.1
Cookie: JSESSIONID=wdit99359t8rnvipinz4tbtu
ACCEPT: application/json,application/xml,text/html,application/
octet-stream
Date: Mon, 17 Jun 2013 20:16:00 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:OGVN4z8NV5vnSAilQTdpv/fcQzU=
Accept-Encoding: gzip, deflate, compress

HTTP/1.1 200 OK
Date: Mon, 17 Jun 2013 20:16:00 GMT
Content-Type: application/octet-stream
Last-Modified: Mon, 17 Jun 2013 20:15:16 GMT
ETag: 10
Content-Type: application/json
Content-Length: 43

The quick green fox jumps over the lazy dog.

Overwriting part of an object
An example of using the ECS API extensions to overwrite part of an object is provided
below.

You can overwrite part of an object by providing only the starting offset in the data
request. The data in the request will be written starting at the provided offset. The
format is: Range: <startingOffset>-

S3 Extensions

Overwriting part of an object 23

For example, to write the data brown cat starting at offset 10, you would issue this
PUT request:

PUT /bucket1/object1 HTTP/1.1
Content-Length: 9
Range: bytes=10-
ACCEPT: application/json,application/xml,text/html,application/
octet-stream
Date: Mon, 17 Jun 2013 20:51:41 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:uwPjDAgmazCP5lu77Zvbo+CiT4Q=
Accept-Encoding: gzip, deflate, compress

brown cat

HTTP/1.1 204 No Content
ETag: 25
x-amz-id-2: object1
x-amz-request-id: 65be45c2-0ee8-448a-a5a0-fff82573aa3b
Content-Length: 0
Date: Mon, 17 Jun 2013 20:51:41 GMT

When retrieving the object, you can see the final value The quick brown cat
jumps over the lazy dog and cat. (green fox has been replaced with
brown cat). You have overwritten part of the data in this object at the provided
starting offset.

GET /bucket1/object1 HTTP/1.1
Date: Mon, 17 Jun 2013 20:51:55 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:/UQpdxNqZtyDkzGbK169GzhZmt4=
Accept-Encoding: gzip, deflate, compress

HTTP/1.1 200 OK
Date: Mon, 17 Jun 2013 20:51:55 GMT
Content-Type: application/octet-stream
Last-Modified: Mon, 17 Jun 2013 20:51:41 GMT
ETag: 25
Content-Type: application/json
Content-Length: 51

The quick brown cat jumps over the lazy dog and cat.

Appending data to an object
An example of using the ECS API extensions to append data to an object is provided
below.

There may be cases where you need to append to an object, but determining the exact
byte offset is not efficient or useful. For this scenario, ECS provides the ability to
atomically append data to the object without specifying an offset (the correct offset
is returned to you in the response).

A Range header with the special value bytes=-1- can be used to append data to an
object. In this way, the object can be extended without knowing the existing object
size.

The format is: Range: bytes=-1-

S3 Extensions

24 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

A sample request showing appending to an existing object using a Range value of
bytes=-1-. Here the value and cat is sent in the request.

PUT /bucket1/object1 HTTP/1.1
Content-Length: 8
Range: bytes=-1-
ACCEPT: application/json,application/xml,text/html,application/
octet-stream
Date: Mon, 17 Jun 2013 20:46:01 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:/sqOFL65riEBSWLg6t8hL0DFW4c=
Accept-Encoding: gzip, deflate, compress

and cat

HTTP/1.1 204 No Content
ETag: 24
x-amz-id-2: object1
x-amz-request-id: 087ac237-6ff5-43e3-b587-0c8fe5c08732
Content-Length: 0
Date: Mon, 17 Jun 2013 20:46:01 GMT

When retrieving the object again, you can see the full value The quick green fox
jumps over the lazy dog and cat. You have appended data to this object.

GET /bucket1/object1 HTTP/1.1
ACCEPT: application/json,application/xml,text/html,application/
octet-stream
Date: Mon, 17 Jun 2013 20:46:56 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:D8FSE8JoLl0MTQcFmd4nG1gMDTg=
Accept-Encoding: gzip, deflate, compress

HTTP/1.1 200 OK
Date: Mon, 17 Jun 2013 20:46:56 GMT
Content-Type: application/octet-stream
Last-Modified: Mon, 17 Jun 2013 20:46:01 GMT
ETag: 24
Content-Type: application/json
Content-Length: 51

The quick green fox jumps over the lazy dog and cat.

Reading multiple byte ranges within an object
An example of using the ECS API extensions to read multiple byte ranges within an
object is provided below.

To read two specific byte ranges within the object named object1, you would issue
the following GET request for Range: bytes==4-8,41-44. The read response
would be for the words quick and lazy.

Note

The Amazon S3 API only supports one range when using the HTTP header Range for
reading; ECS supports multiple byte ranges.

GET /bucket1/object1 HTTP/1.1
Date: Mon, 17 Jun 2013 20:51:55 -0000

S3 Extensions

Reading multiple byte ranges within an object 25

x-emc-namespace: emc
Range: bytes==4-8,41-44
Content-Type: application/octet-stream
Authorization: AWS wuser1:/UQpdxNqZtyDkzGbK169GzhZmt4=
Accept-Encoding: gzip, deflate, compress

HTTP/1.1 206 Partial Content
Date: Mon, 17 Jun 2013 20:51:55 GMT
Content-Type: multipart/byteranges;boundary=bound04acf7f0ae3ccc
Last-Modified: Mon, 17 Jun 2013 20:51:41 GMT
Content-Length: 230

--bound04acf7f0ae3ccc
Content-Type: application/octet-stream
Content-Range: bytes 4-8/50
quick
--bound04acf7f0ae3ccc
Content-Type: application/octet-stream
Content-Range: bytes 41-44/50
lazy
--bound04acf7f0ae3ccc--

Retention

The ECS S3 head supports retention of objects to prevent them being deleted or
modified for a specified period of time. This is an ECS extension and is not available in
the standard S3 API.

Retention can be set in the following ways:

Retention period on object

Stores a retention period with the object. The retention period is set using an x-
emc-retention-period header on the object.

Retention policy on object

A retention policy can be set on the object and the period associate with the
policy can be set for the namespace. This enables the retention period for a group
of objects to be set to the same value using a policy and can be changed for all
objects by changing the policy. The use of a policy provides much more flexibility
than applying the retention period to an object. In addition, multiple retention
policies can be set for a namespace to allow different groups of objects to have
different retention periods.
The retention policy applied to an object using an x-emc-retention-policy
header on the object and the policy retention period must be set by your ECS
administrator from the ECS Portal.

Retention period on bucket

A retention period stored against a bucket can be used to set a retention for all
objects, with the object level retention period or policy used to provide and
object-specific setting where a longer retention is required. The retention period
is set using an x-emc-retention-period header on the bucket.

When an attempt is made to modify or delete the object, the larger of the bucket
retention period or the object period, set using the and object retention periods or the
object retention policy, is used to determine whether the operation can be performed.

S3 buckets can also be created from the ECS Management REST API or from the ECS
Portal and the retention period for a bucket can be set from there.

S3 Extensions

26 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

Lifecycle (expiration) and retention

ECS supports S3 LifecycleConfiguration on buckets that have versioning enabled and
for buckets that do not have versioning enabled.

Where you need to modify objects and delete objects, but need to ensure that the
objects are still retained for a period of time, you can enable versioning on a bucket
and use the lifecycle capability to determine when deleted versions of objects will be
removed from ECS.

Versioning and lifecycle are standard S3 features. However, lifecycle expiration is
closely related to retention, which is an ECS extension. If lifecycle expires before the
retention period expires, the object will not be deleted until the retention period is
over.

File system enabled

S3 buckets can also be filesystem (FS) enabled so that files written using the S3
protocol can be read using file protocols, such as NFS and HDFS, and vice-versa.

Enabling FS access
You can enable file system access using the x-emc-file-system-access-
enabled header when creating a bucket using the S3 protocol. File system access
can also be enabled when creating a bucket from the ECS Portal (using the ECS
Management REST API).

Limitation on FS support
The following limitations apply:

l When a bucket is FS enabled S3 lifecycle management cannot be enabled.

l When a bucket is FS enabled it is not possible to use retention.

Cross-head support for FS
Cross-head support refers to accessing objects written using one protocol using a
different, ECS-supported protocol. Objects written using the S3 head can be read and
written using NFS and HDFS file system protocols.

An important aspects of cross-head support is how object/file permissions translate
between protocols and, in the case of file system access, how user and group
concepts translate between object and file protocols.

You can find more information on the cross-head support with file systems in the
following:

l Configure HDFS

l Administrators Guide: Configure NFS file access

S3 Extensions

Lifecycle (expiration) and retention 27

https://community.emc.com/docs/DOC-53956

S3 Extensions

28 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

CHAPTER 4

S3 Metadata Search Extension

l Use Metadata Search.. 30
l Assign metadata index values to a bucket.. 30
l Assign metadata to objects using the S3 protocol..33
l Use metadata search queries... 34
l Using Metadata Search from the ECS Java SDK ...39
l ECS system metadata and optional attributes... 39

S3 Metadata Search Extension 29

Use Metadata Search
The ECS S3-compatible API provides a metadata search extension to the API that
allows objects within a bucket to be indexed based on their metadata, and for the
metadata index to be queried to find objects and their associated data.

Traditionally, metadata can be associated with objects using the ECS S3 API and, if
you know the identity of the object you are interested in, you can read its metadata.
However, without the ECS metadata search feature, it is not possible to find an object
based on its metadata without iterating through the set of object in a bucket.

Metadata can be either user metadata or system metadata. System metadata is defined
and automatically written to objects by ECS, user metadata is written by clients based
on end-user requirements. Both system and user metadata can be indexed and used as
the basis for metadata searches. The number of metadata values that can be indexed
is limited to 30 and must be defined when the bucket is created.

Note

In the case of small objects (100KB and below), the ingest rate for data slightly
reduces on increasing the number of index keys. Performance testing data showing
the impact of using metadata indexes for smaller objects is available in the ECS
Performance white paper.

In addition to system metadata, objects also have attributes which can be returned as
part of metadata search results.

The following topics cover the steps involves in setting up and using the metadata
search feature:

l Assign metadata index values to a bucket on page 30

l Assign metadata to objects using the S3 protocol on page 33

l Use metadata search queries on page 34

The system metadata values that are available and can be indexed, and the metadata
values that can optionally be returned with search query results, are listed here.

Assign metadata index values to a bucket
You can set metadata index values on a bucket using the ECS Portal or ECS
Management REST API, or using the S3 protocol. The index values must reflect the
name of the metadata that they are indexing and can be based on system metadata or
user metadata.

A list of the available system metadata is provided in ECS system metadata and
optional attributes on page 39.

Index values are set when a bucket is created. You can disable the use of indexing on a
bucket, but you cannot change or delete individual index values.

Setting index values using the Portal

The Manage > Bucket page enables buckets to be created and for index values to be
assigned during the creation process. Refer to Administrators Guide: Create and
manage buckets for details.

S3 Metadata Search Extension

30 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

https://community.emc.com/docs/DOC-53956
https://community.emc.com/docs/DOC-53956

Setting index values using the ECS Management REST API

The methods provided by the ECS Management REST API for working with indexes
are listed in the table below and links are provided to the API reference.

API Path Description

GET /object/bucket/searchmetadata Lists the names of all system metadata keys
available for assigning to a new bucket.

POST /object/bucket Assigns the metadata index names that will be
indexed for the specified bucket. The index
names are supplied in the method payload.

GET /object/bucket Gets a list of buckets. The bucket information
for each bucket shows the metadata search
details.

GET /object/bucket/{bucketname}/info Gets the bucket details for the selected
bucket. The information for the bucket
includes the metadata search details.

DELETE /object/bucket/{bucketname}/
searchmetadata

Stops indexing using the metadata keys.

Example: Get the list of available metadata names
The following example gets the entire list of metadata names available for indexing and
that can be returned in queries.

s3curl.pl --id myuser -- http://{host}:9020/?searchmetadata

The results of the query are as follows.

<MetadataSearchList xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <IndexableKeys>
 <Key>
 <Name>LastModified</Name>
 <Datatype>datetime</Datatype>
 </Key>
 <Key>
 <Name>Owner</Name>
 <Datatype>string</Datatype>
 </Key>
 <Key>
 <Name>Size</Name>
 <Datatype>integer</Datatype>
 </Key>
 <Key>
 <Name>CreateTime</Name>
 <Datatype>datetime</Datatype>
 </Key>
 <Key>
 <Name>ObjectName</Name>
 <Datatype>string</Datatype>
 </Key>
 </IndexableKeys>
 <OptionalAttributes>
 <Attribute>
 <Name>ContentType</Name>

S3 Metadata Search Extension

Assign metadata index values to a bucket 31

 <Datatype>string</Datatype>
 </Attribute>
 <Attribute>
 <Name>Expiration</Name>
 <Datatype>datetime</Datatype>
 </Attribute>
 <Attribute>
 <Name>ContentEncoding</Name>
 <Datatype>string</Datatype>
 </Attribute>
 <Attribute>
 <Name>Expires</Name>
 <Datatype>datetime</Datatype>
 </Attribute>
 <Attribute>
 <Name>Retention</Name>
 <Datatype>integer</Datatype>
 </Attribute>
 </OptionalAttributes>
</MetadataSearchList>

Example: Get the list of keys being indexed for a bucket
The following example gets the list of metadata keys currently being indexed for a
bucket .

s3curl.pl --id myuser -- http://{host}:9020/mybucket/?searchmetadata

The results of this example are as follows.

<MetadataSearchList xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <MetadataSearchEnabled>true</MetadataSearchEnabled>
 <IndexableKeys>
 <Key>
 <Name>Size</Name>
 <Datatype>integer</Datatype>
 </Key>
 <Key>
 <Name>x-amz-meta-DAT</Name>
 <Datatype>datetime</Datatype>
 </Key>
 </IndexableKeys>
</MetadataSearchList>

Setting values using the S3 API

The methods provided by the S3 API for working with indexes are listed in the table
below and links are provided to the API reference.

API Path Description

GET /?searchmetadata Lists the names of all system metadata
available indexing on new buckets.

PUT /{bucket} -H x-emc-metadata-search:
{name[;datatype],...}

Creates a bucket with the search metadata
key indicated in the header.

S3 Metadata Search Extension

32 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

API Path Description

Note

A datatype must be associated with a user
metadata key, but is not necessary for a
system metadata key.

GET /{bucket}/?searchmetadata Gets the list of metadata keys that are
currently being indexed for the bucket.

Example
The example below shows how to create a bucket with metadata indexes for three
system metadata keys and two user metadata keys.

s3curl.pl --id myuser --createbucket -- http://{host}:9020/mybucket
-H "x-emc-metadata-search:Size,CreateTime,LastModified,x-amz-meta-
STR;String,x-amz-meta-INT;Integer"

Note

When adding a new object with x-amz-meta-, values containing special characters do
not have to be url-encoded.

Assign metadata to objects using the S3 protocol
End users can assign user metadata to objects using the "x-amz-meta-" header. The
value assigned can be any text string and is case sensitive.

When the metadata is indexed so that it can be used as the basis of object searches
(the metadata search feature), a data type is assigned to the data. When writing
metadata to objects, clients should write data in the appropriate format so that it can
be used correctly in searches.

The data types are:

String

If the search index term is marked as text, the metadata string will be treated as a
string in all search comparisons.

Integer

If the search index term is marked as integer, the metadata string will be
converted to an integer in search comparisons.

Decimal

If a search index term is marked as decimal, the metadata string will be converted
to a decimal value so that the "." character is treated as a decimal point.

Datetime

If the search index term is marked as datetime, the metadata string will be treated
as a date time with the expected format: yyyy-MM-ddTHH:mm:ssZ If you want
the string to be treated as datetime, you need to use the format yyyy-MM-
ddTHH:mm:ssZ when specifying the metadata.

S3 Metadata Search Extension

Assign metadata to objects using the S3 protocol 33

Example
The example below uses the S3 API to upload an object and two user metadata values
on the object.

s3curl.pl --id myuser --put myfile -- http://{host}:9020/mybucket/
file4 -i -H x-amz-meta-STR:String4 -H x-amz-meta-INT:407

Use metadata search queries
The metadata search feature provides a rich query language that enables objects that
have indexed metadata to be searched.

The syntax is shown in the table below.

API Syntax Response Body

GET /{bucket}/?
query={expression}
&attributes={fieldname,…}
&sorted={selector}
&include_older_version={tru
e|false}
 (…also standard
pagination parameters
apply)

<BucketQueryResult xmlns:ns2="http://
s3.amazonaws.com/doc/2006-03-01/">
 <Name>mybucket</Name>
 <Marker/>
 <NextMarker>NO MORE PAGES</NextMarker>
 <MaxKeys>0</MaxKeys>
 <IsTruncated>false</IsTruncated>
 <ObjectMatches>
 <object>
 <objectName>file4</objectName>

<objectId>09998027b1b7fbb21f50e13fabb481a237ba
2f60f352d437c8da3c7c1c8d7589</objectId>
 <queryMds>
 <type>SYSMD</type>
 <mdMap>
 <entry>
 <key>createtime</key>
 <value>1449081778025</value>
 </entry>
 <entry>
 <key>size</key>
 <value>1024</value>
 </entry>
 <entry>
 <key>mtime</key>
 <value>1449081778025</value>
 </entry>
 </mdMap>
 </queryMds>
 <queryMds>
 <type>USERMD</type>
 <mdMap>
 <entry>
 <key>x-amz-meta-INT</key>
 <value>407</value>
 </entry>
 <entry>
 <key>x-amz-meta-STR</key>
 <value>String4</value>
 </entry>
 </mdMap>
 </queryMds>
 <indexKey/>
 </object>
 <object
 ...
 </object>
 </ObjectMatches>
</BucketQueryResult>

S3 Metadata Search Extension

34 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

The expression keywords and their meanings are listed below:

expression

An expression in the form:

[(]{condition1}[%20[and/or]%20{condition2}][)][%20[and/or]%20…]

Where "condition" is a metadata key name filter in the form:

{selector} {operator}
{argument},

For example:

LastModified > 2015-09-02T11:22:00Z

selector

A searchable key name associated with the bucket.

operator

An operator. One of: ==, >, <, <=, >=

argument

A value that the selector is tested against.

attributes=[fieldname,...]

Specifies any optional object attributes that should be included in the report.
Attribute values will be included in the report where that attribute is present on
the object. The optional attribute values comprise:

l ContentEncoding

l ContentType

l Retention

l Expiration

l Expires

sorted=[selector]

Specifies one searchable key name associated with the bucket. The key name
must be a key that appears in the expression. In the absence of
&sorted=keyname, the output will be sorted according to the first key name that
appears in the query expression.

Note

If "or" operators are used in the expression, the sort order is indeterminate.

include-older-versions=[true|false]

When S3 versioning is enabled on a bucket, setting this to true will return current
and older versions of objects that match the expression. Default is false.

S3 Metadata Search Extension

Use metadata search queries 35

max-num

The maximum number of objects that match the query that should be returned. If
there are more objects than the max-num, a marker will be returned that can be
used to retrieve more matches.

marker

The marker that was returned by a previous query and that indicates the point
from which query matches should be returned.

Datetime queries

Datetime values in user metadata are specified in ISO-8601 format "yyyy-MM-
dd'T'HH:mm:ssZ" and are persisted by ECS in that format. Metadata queries also use
this format. However, ECS persists datetime values for system metadata as epoch
time, the number of milliseconds since the beginning of 1970.

When a query returns results, it returns the datetime format persisted by ECS. An
example of the two formats is shown below.

User metadata upload header example:

-H x-amz-meta-Foo:2015-11-30T12:00:00Z

User and System query expression format:

?query=CreateTime>2015-01-01:00:00:00Z and x-amz-meta-
Foo==2015-11-30T12:00:00Z

Query results fragment - system metadata

<key>createtime</key> <value>1449081777620</value>

Query results fragment - user metadata

<key>x-amz-meta-Foo</key> <value>2015-11-30T12:00:00Z</value>

Using markers and max-num to paginate results

You can specify the maximum number of objects that will be returned by a query using
the max-keys query parameter.

The example below specified a maximum number of objects as 3.

?query=CreateTime>2015-01-01:00:00:00Z and x-amz-meta-
Foo==2015-11-30T12:00:00Z&max-num=3

Where a query matches more objects than the max-keys that has been specified, a
marker will also be returned that can be used to return the next page objects that
match the query but were not returned.

S3 Metadata Search Extension

36 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

The query below specifies a marker that has been retrieved from a previous query:

?query=CreateTime>2015-01-01:00:00:00Z and x-amz-meta-
Foo==2015-11-30T12:00:00Z&max-num=3&marker=rO0ABXNyAD...

When the objects that are returned are the final page of objects, NO MORE PAGES is
returned in the NextMarker of the response body.

<NextMarker>NO MORE PAGES</NextMarker>

Using special characters in queries

The use of url-encoding is required to ensure that special characters are received
correctly by the ECS REST service and quoting can be required to ensure that when
ECS parses the query it does not mis-interpret symbols. For example:

l When querying on x-amz-meta values, special characters must be url-encoded.
For example: when using "%" (ASCII 25 hex), or "/" (ASCII 2F), they must be
encoded as %25 and 2F, respectively.

l When querying on x-amz-meta values that have SQL-reserved characters the
reserved characters must be escaped. This is to ensure that the SQL parser used
by ECS does not consider them operators. For example: 'ab < cd' (that is, make
sure a pair of quotes is passed into the service so that the SQL parser used by
ECS does not consider them operators). The SQL-reserved characters include
comparison operators (=, <, >, +, -, !, ~) and syntax separators (comma, semi-
colon).
Different ways of quoting are possible and depend on the client being used. An
example for Unix command-line tools like S3curl.pl, would be:

?query="'ab+cd<ed;ef'"

In this case, the search value is single-quoted and that is wrapped in double
quotes.

Metadata search example

The example below uses the S3 API to search a bucket for a particular object size and
user metadata value match.

Note

Some REST clients may require that you encode "spaces" with url code %20

s3curl.pl --id myuser
-- "http://{host}:9020.mybucket?query=Size>1000%20and%20x-amz-meta-
STR>=String4

The result shows three objects that match the search.

<BucketQueryResult xmlns:ns2="http://s3.amazonaws.com/doc/
2006-03-01/">
 <Name>mybucket</Name>
 <Marker/>

S3 Metadata Search Extension

Use metadata search queries 37

 <NextMarker>NO MORE PAGES</NextMarker>
 <MaxKeys>0</MaxKeys>
 <IsTruncated>false</IsTruncated>
 <ObjectMatches>
 <object>
 <objectName>file4</objectName>

<objectId>09998027b1b7fbb21f50e13fabb481a237ba2f60f352d437c8da3c7c1c
8d7589</objectId>
 <queryMds>
 <type>SYSMD</type>
 <mdMap>
 <entry>
 <key>createtime</key>
 <value>1449081778025</value>
 </entry>
 <entry>
 <key>size</key>
 <value>1024</value>
 </entry>
 <entry>
 <key>mtime</key>
 <value>1449081778025</value>
 </entry>
 </mdMap>
 </queryMds>
 <queryMds>
 <type>USERMD</type>
 <mdMap>
 <entry>
 <key>x-amz-meta-INT</key>
 <value>407</value>
 </entry>
 <entry>
 <key>x-amz-meta-STR</key>
 <value>String4</value>
 </entry>
 </mdMap>
 </queryMds>
 <indexKey/>
 </object>
 <object>
 <objectName>file5</objectName>

<objectId>1ad87d86ef558ca0620a26855662da1030f7d9ff1d4bbc7c2ffdfe2994
3b9150</objectId>
 <queryMds>
 <type>SYSMD</type>
 <mdMap>
 <entry>
 <key>createtime</key>
 <value>1449081778396</value>
 </entry>
 <entry>
 <key>size</key>
 <value>1024</value>
 </entry>
 <entry>
 <key>mtime</key>
 <value>1449081778396</value>
 </entry>
 </mdMap>
 </queryMds>
 <queryMds>
 <type>USERMD</type>
 <mdMap>
 <entry>
 <key>x-amz-meta-INT</key>

S3 Metadata Search Extension

38 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

 <value>507</value>
 </entry>
 <entry>
 <key>x-amz-meta-STR</key>
 <value>Sring5</value>
 </entry>
 </mdMap>
 </queryMds>
 <indexKey/>
 </object>
 </ObjectMatches>
</BucketQueryResult>

Using Metadata Search from the ECS Java SDK

In the 3.0 SDK, there is an option to exclude the "search" and "searchmetadata"
parameters from the signature if you are connecting to a pre-3.0 ECS. These
parameters were not part of the signature computation in ECS 2.x, but are now part of
the computation to enhance security.

The following compatibility table is provided to show SDK support for the Metadata
Search feature:

ECS Version

2.x 3.x

SDK 2.x Yes No

SDK 3.x Yes Yes

ECS system metadata and optional attributes
System metadata is automatically associated with each object stored in the object
store. Some system metadata is always populated and can be used as index keys,
other metadata is not always populated but, where present, can be returned with
metadata search query results.

System metadata
The system metadata listed in the table below can be used as keys for metadata
search indexes.

Name (Alias) Type Description

ObjectName string Name of the object.

Owner string Identity of the owner of the object.

Size integer Size of the object.

CreateTime datetime Time at which the object was created.

LastModified datetime Time and date at which the object was last
modified.

S3 Metadata Search Extension

Using Metadata Search from the ECS Java SDK 39

Name (Alias) Type Description

Note

Modification supported by ECS S3 byte-range
update extensions, not by pure S3 API.

Optional metadata attributes
Optional system metadata attributes may or may not be populated for an object, but
can be optionally returned along with search query results. The optional system
metadata attributes are listed in the table below.

Name (Alias) Type

ContentType string

Expiration datetime

ContentEncoding string

Expires datetime

Retention integer

S3 Metadata Search Extension

40 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

CHAPTER 5

Create and Manage Secret Keys

l Create and manage secret keys... 42
l Create a key for an object user.. 42
l Create an S3 secret key: self-service...43

Create and Manage Secret Keys 41

Create and manage secret keys
Users of the ECS object services require a secret key in order to authenticate with a
service.

Secret keys can be created and made available to the object user in the following
ways:

l Administrator creates a keys and distributes to the object user (Create a key for
an object user on page 42).

l Object user who is a domain user creates a new key using the self-service API
provided by the ECS Management REST API (Create an S3 secret key: self-
service on page 43).

It is possible to have 2 secret keys for a user. When changing (sometimes referred to
as "rolling over") a secret key, an expiration time in minutes can be set for the old key.
During the expiration interval, both keys will be accepted for requests. This provides a
grace period where an application can be updated to use the new key.

Create a key for an object user
ECS Management users can create a secret key for an object user.

l Generate a secret key from the ECS Portal on page 42

l Create an S3 secret key using the ECS Management REST API on page 42

Generate a secret key from the ECS Portal
You can generate a secret key at the ECS Portal.

Before you begin

l You must be an ECS System Admin or Namespace Admin

If you are a System Admin, you can create a secret key for an object user belonging to
any namespace. If you are a Namespace Admin, you can create a secret key for an
object users who belongs to your namespace.

Procedure

1. At the ECS Portal, select the Manage > Users page.

2. In the Object Users table, select Edit for the user to which you want to assign a
secret key.

3. For S3, select Generate & Add Password.

4. Copy the generated key and email to the object user.

Create an S3 secret key using the ECS Management REST API
The ECS Management REST API enables a management user to create a secret key
for an S3 object user.

The APIs is as follows:

Create and Manage Secret Keys

42 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

API Path Description

/object/user-secret-keys/{uid} API to allow secret keys to be assigned to
object users and enable secret keys to be
managed.

Namespace Admin can create keys for users
in their namespace. System Admin can assign
keys to users in any namespace.

You can find out more information about the API call in the ECS Management REST
API reference.

Create an S3 secret key: self-service
The ECS Management REST API provides the ability to allow authenticated domain
users to request a secret key to enable them to access the object store.

The ECS Management REST API reference can be used where you want to create a
custom client to perform certain ECS management operations. For simple operations
domain users can use curl or a browser-based HTTP client to execute the API to
create a secret key.

When a user runs the object/secret-keys API, ECS automatically creates an
object user and assigns a secret key.

API Path Description

/object/secret-keys API to allow S3 client users to create a new
secret key that enables them to access
objects and buckets within their namespace.

This is also referred to as a self-service API.

The payload for the /object/secret-keys can include an optional existing key
expiry time.

<secret_key_create_param>
 <existing_key_expiry_time_mins></existing_key_expiry_time_mins>
 </secret_key_create_param>

If you are creating a secret key for the first time, you can omit the
existing_key_expiry_time_mins parameter and a call would be:

POST object/secret-keys

Request body
 <?xml version="1.0" encoding="UTF-8"?>
 <secret_key_create_param/>

Response
 <user_secret_key>
 <secret_key>...</secret_key>
 <key_timestamp>...</key_timestamp>

Create and Manage Secret Keys

Create an S3 secret key: self-service 43

http://www.emc.com/techpubs/api/ecs/v3-0-0-0/index.htm
http://www.emc.com/techpubs/api/ecs/v3-0-0-0/index.htm
http://www.emc.com/techpubs/api/ecs/v3-0-0-0/index.htm

 <link rel="..." href="..." />
 </user_secret_key>

Working with self-service keys
There are a number of operations that you might want to perform with self-service
secret keys using the ECS Management REST API Reference.

The examples provided use the curl tool to demonstrate the following activities.

l Log in as a domain user on page 44

l Generate first key on page 44

l Generate second key on page 45

l Check keys on page 45

l Delete all secret keys on page 45

Log in as a domain user
You can log in as a domain user and obtain an authentication token that can be used to
authenticate subsequent requests.

curl -ik -u user@mydomain.com:<Password> https://10.241.48.31:4443/
login
HTTP/1.1 200 OK
Date: Mon, 27 Apr 2015 17:29:38 GMT
Content-Type: application/xml
Content-Length: 107
Connection: keep-alive
X-SDS-AUTH-TOKEN:
BAAcaVAzNU16eVcwM09rOWd2Y1ZoUFZ4QmRTK2JVPQMAQQIADTE0MzAwNzQ4ODA1NTQD
AC
51cm46VG9rZW46YWJmODA1NTEtYmFkNC00ZDA2LWFmMmMtMTQ1YzRjOTdlNGQ0AgAC0A
8=

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<loggedIn>
<user>tcas@corp.sean.com</user>
</loggedIn>

Generate first key
You can generate a secret key.

curl -ks -H "X-SDS-AUTH-TOKEN:
BAAcaVAzNU16eVcwM09rOWd2Y1ZoUFZ4QmRTK2JVPQMAQQIADTE0MzAw
NzQ4ODA1NTQDAC51cm46VG9rZW46YWJmODA1NTEtYmFkNC00ZDA2LWFmMmMtMTQ1YzRj
OTdlNGQ0AgAC0A8="
-H "Content-Type: application/json" -X POST -d "{}"
https://10.241.48.31:4443/object/secret-keys | xmllint --format -

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<user_secret_key>
 <link rel="self" href="/object/user-secret-keys/
tcas@corp.sean.com"/>
 <secret_key>7hXZ9/EHTVvmFuYly/z3gHpihXtEUX/VZxdxDDBd</secret_key>
 <key_expiry_timestamp/>
 <key_timestamp>2015-04-27 17:39:13.813</key_timestamp>
</user_secret_key>

Create and Manage Secret Keys

44 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

http://www.emc.com/techpubs/api/ecs/v3-0-0-0/index.htm

Generate second key
You can generate a second secret key and set the expiration for the first key.

curl -ks -H "X-SDS-AUTH-TOKEN:
BAAcaVAzNU16eVcwM09rOWd2Y1ZoUFZ4QmRTK2JVPQMAQQIADTE0MzAwN
zQ4ODA1NTQDAC51cm46VG9rZW46YWJmODA1NTEtYmFkNC00ZDA2LWFmMmMtMTQ1YzRjO
TdlNGQ0AgAC0A8="
-H "Content-Type: application/json" -X POST -d
"{\"existing_key_expiry_time_mins\": \"10\"}"
https://10.241.48.31:4443/object/secret-keys | xmllint --format -

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<user_secret_key>
 <link rel="self" href="/object/user-secret-keys/
tcas@corp.sean.com"/>
 <secret_key>l3fPCuFCG/bxoOXCPZoYuPwhXrSTwU0f1kFDaRUr</secret_key>
 <key_expiry_timestamp/>
 <key_timestamp>2015-04-27 17:40:12.506</key_timestamp>
</user_secret_key>

Check keys
You can check the keys that you have been assigned. In this case there are two keys
with the first having an expiration date/time.

curl -ks -H "X-SDS-AUTH-TOKEN:
BAAcaVAzNU16eVcwM09rOWd2Y1ZoUFZ4QmRTK2JVPQMAQQIADTE0MzAw
NzQ4ODA1NTQDAC51cm46VG9rZW46YWJmODA1NTEtYmFkNC00ZDA2LWFmMmMtMTQ1YzRj
OTdlNGQ0AgAC0A8="
https://10.241.48.31:4443/object/secret-keys | xmllint --format -
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<user_secret_keys>
 <secret_key_1>7hXZ9/EHTVvmFuYly/z3gHpihXtEUX/VZxdxDDBd</
secret_key_1>
 <secret_key_2>l3fPCuFCG/bxoOXCPZoYuPwhXrSTwU0f1kFDaRUr</
secret_key_2>
 <key_expiry_timestamp_1>2015-04-27 17:50:12.369</
key_expiry_timestamp_1>
 <key_expiry_timestamp_2/>
 <key_timestamp_1>2015-04-27 17:39:13.813</key_timestamp_1>
 <key_timestamp_2>2015-04-27 17:40:12.506</key_timestamp_2>
 <link rel="self" href="/object/secret-keys"/>
</user_secret_keys>

Delete all secret keys
If you need to delete your secret keys before regenerating them. You can use the
following.

curl -ks -H "X-SDS-AUTH-TOKEN:
BAAcaVAzNU16eVcwM09rOWd2Y1ZoUFZ4QmRTK2JVPQMAQQIADTE0MzAw
NzQ4ODA1NTQDAC51cm46VG9rZW46YWJmODA1NTEtYmFkNC00ZDA2LWFmMmMtMTQ1YzRj
OTdlNGQ0AgAC0A8="
-H "Content-Type: application/json" -X POST -d "{}" https://
10.241.48.31:4443/object/secret-keys/deactivate

Create and Manage Secret Keys

Working with self-service keys 45

Create and Manage Secret Keys

46 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

CHAPTER 6

Authenticating with the S3 service

l Authenticating with the S3 service.. 48

Authenticating with the S3 service 47

Authenticating with the S3 service
ECS S3 service allows authentication using Signature Version 2 and Signature Version
4. This topic identifies any ECS-specific aspects of the authentication process.

Amazon S3 uses an authorization header that must be present in all requests to
identify the user and provide a signature for the request. The format of the
authorization header differs between Signature Version 2 and Signature Version 4
authentication.

In order to create an authorization header, you will need an AWS Access Key Id and a
Secret Access Key. In ECS, the AWS Access Key Id maps to the ECS user id (UID). An
AWS Access Key ID has 20 characters (some S3 clients, such as the S3 Browser,
check this), but ECS data service does not have this limitation.

Authentication using Signature V2 and Signature V4 are introduced in:

l Authenticating using Signature V2

l Authenticating using Signature V4

The following notes apply:

l In the ECS object data service, the UID can be configured (through the ECS API
or the ECS UI) with 2 secret keys. The ECS data service will try to use the first
secret key, and if the calculated signature does not match, it will try to use the
second secret key. If the second key fails, it will reject the request. When users
add or change the secret key, they should wait 2 minutes so that all data service
nodes can be refreshed with the new secret key before using the new secret key.

l In the ECS data service, namespace is also taken into HMAC signature calculation.

Authenticating using Signature V2

The Authorization header when using Signature V2 looks like this:

Authorization: AWS <AWSAccessKeyId>:<Signature>

For example:

GET /photos/puppy.jpg
?AWSAccessKeyId=user11&Expires=1141889120&Signature=vjbyPxybdZaNmGa
%2ByT272YEAiv4%3D HTTP/1.1
Host: myco.s3.amazonaws.com
Date: Mon, 26 Mar 2007 19:37:58 +0000

Authentication using Signature V2 is described in:

l http://docs.aws.amazon.com/AmazonS3/latest/dev/RESTAuthentication.html

Authenticating using Signature V4

The Authorization header when using Signature V4 looks like this:

Authorization: AWS4-HMAC-SHA256
Credential=user11/20130524/us/s3/aws4_request,
SignedHeaders=host;range;x-amz-date,

Authenticating with the S3 service

48 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

http://docs.aws.amazon.com/AmazonS3/latest/dev/RESTAuthentication.html

Signature=fe5f80f77d5fa3beca038a248ff027d0445342fe2855ddc96317663032
6f1024

The Credential component comprises your Access Key Id followed by the Credential
Scope. The Credential Scope comprises Date/Region/Service Name/Termination
String. For ECS, the Service Name is always s3 and the Region can be any string.
When computing the signature, ECS will use the Region string passed by the client.

Authentication using Signature V4 is described in:

l http://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-
requests.html , and

l http://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-header-based-
auth.html

An example of a PUT bucket request using Signature V4 is provided below:

PUT /bucket_demo HTTP/1.1
x-amz-date: 20160726T033659Z
Authorization: AWS4-HMAC-SHA256 Credential=user11/20160726/us/s3/
aws4_request,SignedHeaders=host;x-amz-date;x-emc-
namespace,Signature=e75a150daa28a2b2f7ca24f6fd0e161cb58648a25121d310
8f0af5c9451b09ce
x-emc-namespace: ns1
x-emc-rest-client: TRUE
x-amz-content-sha256:
e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855
Content-Length: 0
Host: 10.247.195.130:9021
Connection: Keep-Alive
User-Agent: Apache-HttpClient/4.2.1 (java 1.5)

Response:

HTTP/1.1 200 OK
Date: Tue, 26 Jul 2016 03:37:00 GMT
Server: ViPR/1.0
x-amz-request-id: 0af7c382:156123ab861:4192:896
x-amz-id-2:
3e2b2280876d444d6c7215091692fb43b87d6ad95b970f48911d635729a8f7ff
Location: /bucket_demo_2016072603365969263
Content-Length: 0

Authenticating with the S3 service

Authenticating with the S3 service 49

http://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html
http://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html
http://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-header-based-auth.html
http://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-header-based-auth.html

Authenticating with the S3 service

50 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

CHAPTER 7

Java Client Access

l Use SDKs to access the S3 service..52

Java Client Access 51

Use SDKs to access the S3 service
When developing applications that talk to the ECS S3 service, there are a number of
SDKs that will support your development activity.

The EMC Community provides information on the various clients that are available and
provides guidance on their use: ECS Community: Developer Resources.

The following topics describe the use of the Amazon S3 SDK and the use of the EMC
ECS Java SDK.

l Using the Java Amazon SDK on page 52

l Java SDK client for ECS on page 54

Note

If you want to make use of the ECS API Extensions (see S3 Extensions on page 22),
support for these extensions is provided in the EMC ECS Java SDK. If you do not need
support for the ECS extensions, or you have existing applications that use it, you can
use the Amazon Java SDK.

Note

Compatibility of the ECS Java SDK with the metadata search extension is described in
Using Metadata Search from the ECS Java SDK on page 39.

Using the Java Amazon SDK
You can access ECS object storage using the Java S3 SDK.

By default the AmazonS3Client client object is coded to work directly against
amazon.com. This section shows how to set up the AmazonS3Client to work against
ECS.

In order to create an instance of the AmazonS3Client object, you need to pass it
credentials. This is achieved through creating an AWSCredentials object and passing it
the AWS Access Key (your ECS username) and your generated secret key for ECS.

The following code snippet shows how to set this up.

AmazonS3Client client = new AmazonS3Client(new
BasicAWSCredentials(uid, secret));

By default the Amazon client will attempt to contact Amazon WebServices. In order to
override this behavior and contact ECS you need to set a specific endpoint.

You can set the endpoint using the setEndpoint method. The protocol specified on the
endpoint dictates whether the client should be directed at the HTTP port (9020) or
the HTTPS port (9021).

Note

If you intend to use the HTTPS port, the JDK of your application must be set up to
validate the ECS certificate successfully; otherwise the client will throw SSL
verification errors and fail to connect.

Java Client Access

52 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

https://community.emc.com/community/products/ecs#developer

In the snippet below, the client is being used to access ECS over HTTP:

AmazonS3Client client = new AmazonS3Client(new
BasicAWSCredentials(uid, secret));
client.setEndpoint("http://ecs1.emc.com:9020");

When using path-style addressing (ecs1.emc.com/mybucket), you will need to set
the setPathStyleAccess option, as shown below:

S3ClientOptions options = new S3ClientOptions();
options.setPathStyleAccess(true);

AmazonS3Client client = new AmazonS3Client(new
BasicAWSCredentials(uid, secret));
client.setEndpoint("http://ecs1.emc.com:9020");
client.setS3ClientOptions(options);

The following code shows how to list objects in a bucket.

ObjectListing objects = client.listObjects("mybucket");
for (S3ObjectSummary summary : objects.getObjectSummaries()) {
 System.out.println(summary.getKey()+ " "+summary.getOwner());
}

The CreateBucket operation differs from other operations in that it expects a region
to be specified. Against S3 this would indicate the datacenter in which the bucket
should be created. However, ECS does not support regions. For this reason, when
calling the CreateBucket operation, we specify the standard region, which stops the
AWS client from downloading the Amazon Region configuration file from Amazon
CloudFront.

client.createBucket("mybucket", "Standard");

The complete example for communicating with the ECS S3 data service, creating a
bucket, and then manipulating an object is provided below:

public class Test {
 public static String uid = "root";
 public static String secret =
"KHBkaH0Xd7YKF43ZPFbWMBT9OP0vIcFAMkD/9dwj";
 public static String viprDataNode = "http://ecs.yourco.com:
9020";

 public static String bucketName = "myBucket";
 public static File objectFile = new File("/photos/cat1.jpg");

 public static void main(String[] args) throws Exception {

 AmazonS3Client client = new AmazonS3Client(new
BasicAWSCredentials(uid, secret));

 S3ClientOptions options = new S3ClientOptions();
 options.setPathStyleAccess(true);

 AmazonS3Client client = new AmazonS3Client(credentials);
 client.setEndpoint(viprDataNode);
 client.setS3ClientOptions(options);

Java Client Access

Using the Java Amazon SDK 53

 client.createBucket(bucketName, "Standard");
 listObjects(client);

 client.putObject(bucketName, objectFile.getName(),
objectFile);
 listObjects(client);

client.copyObject(bucketName,objectFile.getName(),bucketName,
"copy-" + objectFile.getName());
 listObjects(client);
 }

 public static void listObjects(AmazonS3Client client) {
 ObjectListing objects = client.listObjects(bucketName);
 for (S3ObjectSummary summary :
objects.getObjectSummaries()) {
 System.out.println(summary.getKey()+
" "+summary.getOwner());
 }
 }
}

Java SDK client for ECS
The ECS Java SDK builds on the Amazon S3 Java SDK and supports the ECS API
extensions.

An example of using the ViPRS3client is shown below.

package com.emc.ecs.sample;

import com.amazonaws.util.StringInputStream;
import com.emc.vipr.services.s3.ViPRS3Client;

public class BucketCreate {

 private ViPRS3Client s3;

 public BucketCreate() {

 URI endpoint = new URI(“http://ecs.yourco.com:9020”);
 String accessKey = “fred@yourco.com”;
 String secretKey = “pcQQ20rDI2DHZOIWNkAug3wK4XJP9sQnZqbQJev3”;
 BasicAWSCredentials creds = new BasicAWSCredentials(accessKey,
secretKey);
 ViPRS3Client client = new ViPRS3Client(endpoint, creds);

 }

 public static void main(String[] args) throws Exception {
 BucketCreate instance = new BucketCreate();
 instance.runSample();
 }

 public void runSample() {

 String bucketName="mybucket";
 String key1 = "test1.txt";
 String content = "Hello World!";

 try {
 s3.createBucket(bucketName);

Java Client Access

54 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

 s3.putObject(bucketName, key1, new
StringInputStream(content), null);
 }

 catch (Exception e) {

 }

 }
}

Java Client Access

Java SDK client for ECS 55

Java Client Access

56 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

PART 2

OpenStack Swift

Chapter 8, "Introduction to OpenStack Swift support in ECS"

Chapter 9, "Swift Supported Features"

Chapter 10, "Swift Extensions"

Chapter 11, "Authentication"

Chapter 12, "Authorization"

OpenStack Swift 57

OpenStack Swift

58 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

CHAPTER 8

Introduction to OpenStack Swift support in
ECS

l OpenStack Swift API support in ECS...60

Introduction to OpenStack Swift support in ECS 59

OpenStack Swift API support in ECS
ECS includes support for the OpenStack Swift API. This part describes the supported
operations and describes the mechanisms for authorization and authentication.

The OpenStack Swift Service is made available on the following ports.

Protocol Ports

HTTP 9024

HTTPS 9025

The following topics describe supported methods, the ECS extensions, and the
mechanism for authentication:

l OpenStack Swift supported operations on page 62

l Swift API Extensions on page 66

l OpenStack Swift Authentication on page 72

l Authorization on Container on page 80

Examples showing the use of the OpenStack Swift API can be found here:

l OpenStack API Examples

Introduction to OpenStack Swift support in ECS

60 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

http://docs.openstack.org/api/openstack-object-storage/1.0/content/ch_object-storage-dev-troubleshooting.html

CHAPTER 9

Swift Supported Features

l OpenStack Swift supported operations... 62

Swift Supported Features 61

OpenStack Swift supported operations
The following sections list the OpenStack REST API requests that are supported by
ECS.

l Supported OpenStack Swift calls on page 62

l Unsupported OpenStack Swift calls on page 63

This information is taken from the Object Storage API V1 section of the OpenStack
API Reference documentation.

Supported OpenStack Swift calls
The following OpenStack Swift REST API calls are supported in ECS.

Table 4 OpenStack Swift supported calls

Method Path Description

GET v1/{account} Retrieve a list of existing storage containers ordered
by names.

GET v1/{account}/
{container}

Retrieve a list of objects stored in the container.

PUT v1/{account}/
{container}

Create a container.

DELETE v1/{account}/
{container}

Delete an empty container.

POST v1/{account}/
{container}

Create or update the arbitrary container metadata by
associating custom metadata headers with the
container level URI. These headers must take the
format X-Container-Meta-*.

HEAD v1/{account}/
{container}

Retrieve the container metadata. Currently does not
include object count and bytes used.
User requires administrator privileges.

GET v1/{account}/
{container}/{object}

Retrieve the object's data.

PUT v1/{account}/
{container}/{object}

Write, or overwrite, an object's content and
metadata.
Used to copy existing object to another object using
X-Copy-From header to designate source.

For a Dynamic Large Object (DLO) or a Static Large
Object (SLO) the object can be a manifest, as
described here.

DELETE v1/{account}/
{container}/{object}

Remove an object from the storage system
permanently. In combination with the COPY
command you can use COPY then DELETE to
effectively move an object.

HEAD v1/{account}/
{container}/{object}

Retrieve object metadata and other standard HTTP
headers.

Swift Supported Features

62 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

http://developer.openstack.org/api-ref-objectstorage-v1.html
http://developer.openstack.org/api-ref-objectstorage-v1.html
http://docs.openstack.org/developer/swift/api/large_objects.html#static-large-objects

Table 4 OpenStack Swift supported calls (continued)

Method Path Description

POST v1/{account}/
{container}/{object}

Set and overwrite arbitrary object metadata. These
metadata must take the format X-Object-Meta-*. X-
Delete-At or X-Delete-After for expiring objects can
also be assigned by this operation. But other headers
such as Content-Type cannot be changed by this
operation.

Unsupported OpenStack Swift calls
The following OpenStack Swift REST API calls are not supported in ECS.

Table 5 OpenStack Swift unsupported calls

Method Path Description

HEAD v1/{account} Retrieve the account metadata, for example, the
number of containers, the total bytes stored in
OpenStackObject Storage for the account/tenant.

POST v1/{account} Create or update an account metadata by
associating custom metadata headers with the
account level URI. These headers must take the
format X-Account-Meta-*.

COPY v1/{account}/
{container}/{object}

Copy is supported using PUT v1/{account}/
{container}/{object} with X-Copy-From header.

Swift Supported Features

OpenStack Swift supported operations 63

Swift Supported Features

64 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

CHAPTER 10

Swift Extensions

l Swift API Extensions..66
l Updating a byte range within an object.. 66
l Overwriting part of an object... 67
l Appending data to an object.. 68
l Reading multiple byte ranges within an object... 69

Swift Extensions 65

Swift API Extensions

A number of extensions to the object APIs are supported.

Updating a byte range within an object
An example of using the ECS API extensions to update a byte range of an object is
provided below.

First do a GET request on the object named object1 located in bucket1 to review
the object. object1 has the value The quick brown fox jumps over the
lazy dog.

GET /bucket1/object1 HTTP/1.1
Date: Mon, 17 Jun 2013 20:04:40 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:9qxKiHt2H7upUDPF86dvGp8VdvI=
Accept-Encoding: gzip, deflate, compress

HTTP/1.1 200 OK
Date: Mon, 17 Jun 2013 20:04:40 GMT
Content-Type: application/octet-stream
Last-Modified: Mon, 17 Jun 2013 20:04:28 GMT
ETag: 6
Content-Type: application/json
Content-Length: 43

The quick brown fox jumps over the lazy dog.

Now you want to update a specific byte range within this object. To do this, the Range
header in the object data request must include the start and end offsets of the object
that you want to update.
The format is: Range: bytes=<startOffset>-<endOffset>
In the example below, the PUT request includes the Range header with the value
bytes=10-14 indicating that bytes 10,11,12,13,14 are to be replaced by the value sent
in the request. Here, the new value green is being sent.

PUT /bucket1/object1 HTTP/1.1
Content-Length: 5
Range: bytes=10-14
ACCEPT: application/json,application/xml,text/html,application/
octet-stream
Date: Mon, 17 Jun 2013 20:15:16 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:xHJcAYAEQansKLaF+/4PdLBHyaM=
Accept-Encoding: gzip, deflate, compress

green

HTTP/1.1 204 No Content
ETag: 10
x-amz-id-2: object1
x-amz-request-id: 027f037c-29ea-4670-8670-de82d0e9f52a

Swift Extensions

66 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

Content-Length: 0
Date: Mon, 17 Jun 2013 20:15:16 GMT

When reading the object again, the new value is now The quick green fox
jumps over the lazy dog. (The word brown has been replaced with green.)
You have updated a specific byte range within this object.

GET /bucket1/object1 HTTP/1.1
Cookie: JSESSIONID=wdit99359t8rnvipinz4tbtu
ACCEPT: application/json,application/xml,text/html,application/
octet-stream
Date: Mon, 17 Jun 2013 20:16:00 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:OGVN4z8NV5vnSAilQTdpv/fcQzU=
Accept-Encoding: gzip, deflate, compress

HTTP/1.1 200 OK
Date: Mon, 17 Jun 2013 20:16:00 GMT
Content-Type: application/octet-stream
Last-Modified: Mon, 17 Jun 2013 20:15:16 GMT
ETag: 10
Content-Type: application/json
Content-Length: 43

The quick green fox jumps over the lazy dog.

Overwriting part of an object
An example of using the ECS API extensions to overwrite part of an object is provided
below.

You can overwrite part of an object by providing only the starting offset in the data
request. The data in the request will be written starting at the provided offset. The
format is: Range: <startingOffset>-
For example, to write the data brown cat starting at offset 10, you would issue this
PUT request:

PUT /bucket1/object1 HTTP/1.1
Content-Length: 9
Range: bytes=10-
ACCEPT: application/json,application/xml,text/html,application/
octet-stream
Date: Mon, 17 Jun 2013 20:51:41 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:uwPjDAgmazCP5lu77Zvbo+CiT4Q=
Accept-Encoding: gzip, deflate, compress

brown cat

HTTP/1.1 204 No Content
ETag: 25
x-amz-id-2: object1
x-amz-request-id: 65be45c2-0ee8-448a-a5a0-fff82573aa3b
Content-Length: 0
Date: Mon, 17 Jun 2013 20:51:41 GMT

Swift Extensions

Overwriting part of an object 67

When retrieving the object, you can see the final value The quick brown cat
jumps over the lazy dog and cat. (green fox has been replaced with
brown cat). You have overwritten part of the data in this object at the provided
starting offset.

GET /bucket1/object1 HTTP/1.1
Date: Mon, 17 Jun 2013 20:51:55 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:/UQpdxNqZtyDkzGbK169GzhZmt4=
Accept-Encoding: gzip, deflate, compress

HTTP/1.1 200 OK
Date: Mon, 17 Jun 2013 20:51:55 GMT
Content-Type: application/octet-stream
Last-Modified: Mon, 17 Jun 2013 20:51:41 GMT
ETag: 25
Content-Type: application/json
Content-Length: 51

The quick brown cat jumps over the lazy dog and cat.

Appending data to an object
An example of using the ECS API extensions to append data to an object is provided
below.

There may be cases where you need to append to an object, but determining the exact
byte offset is not efficient or useful. For this scenario, ECS provides the ability to
atomically append data to the object without specifying an offset (the correct offset
is returned to you in the response).

A Range header with the special value bytes=-1- can be used to append data to an
object. In this way, the object can be extended without knowing the existing object
size.

The format is: Range: bytes=-1-

A sample request showing appending to an existing object using a Range value of
bytes=-1-. Here the value and cat is sent in the request.

PUT /bucket1/object1 HTTP/1.1
Content-Length: 8
Range: bytes=-1-
ACCEPT: application/json,application/xml,text/html,application/
octet-stream
Date: Mon, 17 Jun 2013 20:46:01 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:/sqOFL65riEBSWLg6t8hL0DFW4c=
Accept-Encoding: gzip, deflate, compress

and cat

HTTP/1.1 204 No Content
ETag: 24
x-amz-id-2: object1
x-amz-request-id: 087ac237-6ff5-43e3-b587-0c8fe5c08732
Content-Length: 0
Date: Mon, 17 Jun 2013 20:46:01 GMT

Swift Extensions

68 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

When retrieving the object again, you can see the full value The quick green fox
jumps over the lazy dog and cat. You have appended data to this object.

GET /bucket1/object1 HTTP/1.1
ACCEPT: application/json,application/xml,text/html,application/
octet-stream
Date: Mon, 17 Jun 2013 20:46:56 -0000
x-emc-namespace: emc
Content-Type: application/octet-stream
Authorization: AWS wuser1:D8FSE8JoLl0MTQcFmd4nG1gMDTg=
Accept-Encoding: gzip, deflate, compress

HTTP/1.1 200 OK
Date: Mon, 17 Jun 2013 20:46:56 GMT
Content-Type: application/octet-stream
Last-Modified: Mon, 17 Jun 2013 20:46:01 GMT
ETag: 24
Content-Type: application/json
Content-Length: 51

The quick green fox jumps over the lazy dog and cat.

Reading multiple byte ranges within an object
An example of using the ECS API extensions to read multiple byte ranges within an
object is provided below.

To read two specific byte ranges within the object named object1, you would issue
the following GET request for Range: bytes==4-8,41-44. The read response
would be for the words quick and lazy.

Note

The Amazon S3 API only supports one range when using the HTTP header Range for
reading; ECS supports multiple byte ranges.

GET /bucket1/object1 HTTP/1.1
Date: Mon, 17 Jun 2013 20:51:55 -0000
x-emc-namespace: emc
Range: bytes==4-8,41-44
Content-Type: application/octet-stream
Authorization: AWS wuser1:/UQpdxNqZtyDkzGbK169GzhZmt4=
Accept-Encoding: gzip, deflate, compress

HTTP/1.1 206 Partial Content
Date: Mon, 17 Jun 2013 20:51:55 GMT
Content-Type: multipart/byteranges;boundary=bound04acf7f0ae3ccc
Last-Modified: Mon, 17 Jun 2013 20:51:41 GMT
Content-Length: 230

--bound04acf7f0ae3ccc
Content-Type: application/octet-stream
Content-Range: bytes 4-8/50
quick
--bound04acf7f0ae3ccc
Content-Type: application/octet-stream
Content-Range: bytes 41-44/50
lazy
--bound04acf7f0ae3ccc--

Swift Extensions

Reading multiple byte ranges within an object 69

Swift Extensions

70 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

CHAPTER 11

Authentication

l OpenStack Swift Authentication.. 72
l OpenStack Version 1 authentication ..73
l OpenStack Version 2 authentication.. 75
l Authentication using ECS Keystone V3 integration.. 77

Authentication 71

OpenStack Swift Authentication

ECS provides support for different versions of the OpenStack Swift Authentication
protocol.

v1

ECS enables object users to authenticate with the ECS Swift service and obtain
an authentication token that can be used when making subsequent API calls to
the ECS Swift service. See OpenStack Version 1 authentication on page 73.

v2

ECS enables object users to authenticate with the ECS Swift service to obtain a
scoped token, that is, a token associated with a tenant (equivalent to a project),
that can be used when making subsequent API calls to the ECS Swift service. See
OpenStack Version 2 authentication on page 75

v3

ECS validates Keystone V3 users that present tokens scoped to a Keystone
project. See Authentication using ECS Keystone V3 integration on page 77.

For v1 and v2 protocols, access to the ECS object store using the OpenStack Swift
protocol requires an ECS object user account and a Swift password.

For v3, users are created, and assigned to projects and roles, outside of ECS using a
Keystone V3 service. ECS does not perform authentication, but validates the
authentication token with the Keystone V3 service.

Assigning Swift credentials to ECS object users is described in Create Swift users at
the ECS Portal on page 72.

Create Swift users at the ECS Portal
ECS object users can be given credentials to access the ECS object store using the
OpenStack Swift protocol.

Before you begin

You will need to be an ECS System Admin.

You can find more information on adding ECS object users in Administrators Guide:
Manage users and roles .

Procedure

1. At the ECS Portal, select Manage > Users.

The User Management page is displayed.

2. At the User Management page, either select New Object User or add a Swift
password to an existing user by selecting the Edit action for a user listed in the
users table.

If you are creating a new user, you will need to enter a name for the user and
select the namespace to which the users belongs.

3. In the Swift area, Groups field, enter a group that the user will belong to.

The Swift area is highlighted in the figure below.

Authentication

72 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

https://community.emc.com/docs/DOC-53956
https://community.emc.com/docs/DOC-53956

If you specify the "admin" group, users will automatically be able to perform all
container operations. If you specify a different group, that group must be given
permissions on the container. Refer to Authorization on Container on page 80
for more information on container authorization.

4. Enter a password for the Swift user.

5. Select Set Password & Groups.

OpenStack Version 1 authentication
You can authenticate with the ECS OpenStack Swift service using V1 of the
authentication protocol using this procedure.

Procedure

1. Acquire a UID and password for an ECS object user.

You can do this from the ECS Portal (see Create Swift users at the ECS Portal
on page 72) or you can call the following ECS REST API to generate a
password.

Request:

PUT /object/user-password/myUser@emc.com
 <user_password_create>
 <password>myPassword</password>
 <namespace>EMC_NAMESPACE</namespace>
 </user_password_create>

Response:

HTTP 200

Authentication

OpenStack Version 1 authentication 73

2. Call the OpenStack authentication REST API shown below. Use port 9024 for
HTTP, or port 9025 for HTTPS.

Request:

GET /auth/v1.0
 X-Auth-User: myUser@emc.com
 X-Auth-Key: myPassword

Response:

HTTP/1.1
 204 No
 Content
 Date: Mon, 12 Nov 2010 15:32:21 GMT
 Server: Apache

 X-Storage-Url: https://{hostname}/v1/account
 X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb
 Content-Length: 0

Results

If the UID and password are validated by ECS, the storage URL and token are returned
in the response header. Further requests are authenticated by including this token.
The storage URL provides the host name and resource address. You can access
containers and objects by providing the following X-Storage-Url header:

X-Storage-Url: https://{hostname}/v1/{account}/{container}/{object}

The generated token expires 24 hours after creation. If you repeat the authentication
request within the 24 hour period using the same UID and password, OpenStack will
return the same token. Once the 24 hour expiration period expires, OpenStack will
return a new token.

In the following simple authentication example, the first REST call returns an X-Auth-
Token. The second REST call uses that X-Auth-Token to perform a GET request on an
account.

$ curl -i -H "X-Storage-User: tim_250@sanity.local" -H "X-Storage-
Pass: 1fO9X3xyrVhfcokqy3U1UyTY029gha5T+k+vjLqS"

 http://ecs.yourco.com:9024/auth/v1.0

 HTTP/1.1 204 No Content
 X-Storage-Url: http://ecs.yourco.com:9024/v1/s3
 X-Auth-Token: ECS_8cf4a4e943f94711aad1c91a08e98435
 Server: Jetty(7.6.4.v20120524)

$ curl -v -X GET -s -H "X-Auth-Token:
8cf4a4e943f94711aad1c91a08e98435"

Authentication

74 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

 http://
ecs.yourco.com:9024/v1/s3

* About to connect() to ecs.yourco.com port 9024 (#0)
 * Trying 203.0.113.10...
 * Adding handle: conn: 0x7f9218808c00
 * Adding handle: send: 0
 * Adding handle: recv: 0
 * Curl_addHandleToPipeline: length: 1
 * - Conn 0 (0x7f9218808c00) send_pipe: 1, recv_pipe: 0
 * Connected to ecs.yourco.com (203.0.113.10) port 9024 (#0)

 > GET /v1/s3 HTTP/1.1
 > User-Agent: curl/7.31.0
 > Host: ecs.yourco.com:9024
 > Accept: */*
 > X-Auth-Token: 8cf4a4e943f94711aad1c91a08e98435
 >
 < HTTP/1.1 204 No Content
 < Date: Mon, 16 Sep 2013 19:31:45 GMT
 < Content-Type: text/plain
 * Server Jetty(7.6.4.v20120524) is not blacklisted
 < Server: Jetty(7.6.4.v20120524)
 <

 * Connection #0 to host ecs.yourco.com left intact

OpenStack Version 2 authentication
ECS includes limited support for OpenStack Version 2 (Keystone) authentication.

Before you begin

ECS provides an implementation of the OpenStack Swift V2 identity service which
enables a Swift application that uses V2 authentication to authenticate users. Users
must be ECS object users who have been assigned OpenStack Swift credentials which
enable them to access the ECS object store using the Swift protocol.

Only tokens that are scoped to an ECS tenant/namespace (equivalent to a Swift
project) can be used to make Swift API calls. An unscoped token can be obtained and
used to access the identity service in order to retrieve the tenant identity before
obtaining a token scoped to a tenant and a service endpoint.

The scoped token and service endpoint can be used to authenticate with ECS as
described in the previous section describing V1 authentication.

The two articles listed below provide important background information.

l OpenStack Keystone Workflow and Token Scoping

l Authenticate for Admin API

Procedure

1. To retrieve an unscoped token from ECS you can use the /v2.0/tokens API
and supply a username and password for the ECS Swift service.

curl -v -X POST -H 'ACCEPT: application/json' -H "Content-
Type: application/json" -d '{"auth":

Authentication

OpenStack Version 2 authentication 75

http://bodenr.blogspot.com/2014/03/openstack-keystone-workflow-token.html
http://docs.openstack.org/api/openstack-identity-service/2.0/content/POST_authenticate_v2.0_tokens_.html

{"passwordCredentials" : {"username" : "swift_user",
"password" : "123"}}}' http://203.0.113.10:9024/v2.0/tokens

The response looks like the following. The unscoped token is preceded by id and
tokens generated by ECS and preceded by the "ecs_" prefix.

{"access": {"token":
{"id":"ecs_d668b72a011c4edf960324ab2e87438b","expires":"137663
3127950"l},"user":
 {"name": "sysadmin", "roles":[],
"role_links":[] },"serviceCatalog":[] }} , }

2. Retrieve tenant info associated with the unscoped token.

curl -v http://203.0.113.10:9024/v2.0/tenants -H 'X-Auth-
Token: d668b72a011c4edf960324ab2e87438b'

The response looks like the following.

{"tenants_links":[], "tenants":
[{"description":"s3","enabled":true, "name": "s3"}]}

3. Retrieve scoped token along with storageUrl.

curl -v -X POST -H 'ACCEPT: application/json' -H "Content-
Type: application/json" -d '{"auth": {"tenantName" : "s3",
 "token":{"id" :
ecs_d668b72a011c4edf960324ab2e87438b"}}}' http://
203.0.113.10:9024/v2.0/tokens

An example response follows. The scoped token is preceded by id.

{"access":{"token":{"id":"ecs_baf0709e30ed4b138c5db6767ba76a4e
","expires":"1376633255485","tenant":
{"description":"s3","enabled":true,"name":"s3"}},
"user":{"name":"swift_admin","roles":[{"name":"member"},
{"name":"admin"}],"role_links":[]},
 "serviceCatalog":[{"type":"object-store",
"name":"Swift","endpoints_links":[],"endpoint":
[{"internalURL":
 "http://203.0.113.10:9024/v1/s3","publicURL":"http://
203.0.113.10:9024/v1/s3"}]}]}}

Authentication

76 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

4. Use the scoped token and service endpoint URL for swift authentication. This
step is the same as in V1 of OpenStack.

curl -v -H "X-Auth-Token: baf0709e30ed4b138c5db6767ba76a4e"
http://203.0.113.10:9024/v1/s3/{container}/{object}

Authentication using ECS Keystone V3 integration
ECS provides support for Keystone V3 by validating authentication tokens provided by
OpenStack Swift users. For Keystone V3, users are created outside of ECS using a
Keystone V3 service. ECS does not perform authentication, but validates the
authentication token with the Keystone V3 service.

Note

In the Keystone domain, a project can be thought of as a equivalent to an ECS tenant/
namespace. An ECS namespace can be thought of as a tenant.

Keystone V3 enables users to be assigned to roles and for the actions that they are
authorized to perform to be based on their role membership. However, ECS support
for Keystone V3 does not currently support Keystone policies, so users must be in the
"admin" role/group in order to perform container operations.

Authentication tokens must be scoped to a project; unscoped tokens are not allowed
with ECS. Operations related to unscoped tokens, such as obtaining a list of projects
(equivalent to a tenant in ECS) and services, must be performed by users against the
Keystone service directly, and users must then obtain a scoped token from the
Keystone service that can then be validated by ECS and, if valid, used to authenticate
with ECS.

To enable ECS validation, an authentication provider must have been configured in
ECS so that when a project-scoped token is received from a user, ECS can validate it
against the Keystone V3 authentication provider. In addition, an ECS namespace
corresponding to the Keystone project must be created. More information is provided
in Configure ECS to authenticate keystone users on page 78.

Authorization Checks
ECS uses the information provided by the Keystone tokens to perform authorization
decisions. The authorization checks are as follows:

1. ECS checks whether the project that the token is scoped to matches the project
in the URI.

2. If the operation is an object operation, ECS evaluates the ACLs associate with the
object to determine if the operation is allowed.

3. If the operation is a container operation, ECS evaluates the requested operation
against the user's roles for the project, as follows:

a. If the operation is a list containers operation and user has admin role, then
allow

b. If the operation is a create containers operation and user has admin role, then
allow

c. If the operation is an update container metadata operation and user has admin
role, then allow

d. If the operation is a read container metadata operation and user has admin role,
then allow

Authentication

Authentication using ECS Keystone V3 integration 77

e. If the operation is a delete containers operation and user has admin role, then
allow

Domains
in Keystone V3 all users belong to a domain and a domain can have multiple projects.
Users have access to projects based on their role. If a user is not assigned to a domain,
their domain will be default.

Objects and containers created using Swift Keystone V3 users will be owned by
<user>@<domain.com>. If the user was not assigned to a domain, their username
assigned to containers and objects will be <user>@default.

Configure ECS to authenticate keystone users
To authenticate Keystone users, you must add an authentication provider to ECS and
create a namespace that the Swift users belong to.

Before you begin

The following pre-requisites apply:

l You will need credentials for an ECS System Admin account.

l You will need to obtain the identity of the Keystone project to which Swift users
that will access ECS belong.

Procedure

1. Log into ECS as a System Admin.

2. Create an authentication provider that specifies the Keystone V3 service
endpoint and the credentials of an administrator account that can be used to
validate tokens.

See Administrators Guide: Configure an Authentication Provider .

3. Create an ECS namespace that has the same ID as the Keystone project/
account that the users that wish to authenticate belong to.

You will need to obtain the Keystone project ID.

Results

Once the namespace is created, users belonging to the corresponding Keystone
project, and who have a token that is scoped to that project, can authenticate with
ECS (through ECS communicating with the Keystone authentication provider) and
use the Swift API to access the ECS object store.

Authentication

78 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

https://community.emc.com/docs/DOC-53956

CHAPTER 12

Authorization

l Authorization on Container.. 80

Authorization 79

Authorization on Container
OpenStack Swift authorization targets only containers.

Swift currently supports two types of authorization:

l Referral style authorization

l Group style authorization.

ECS supports only group-based authorization.

Admin users can perform all operations within the account. Non-admin users can only
perform operations per container based on the container's X-Container-Read and X-
Container-Write Access Control Lists. The following operations can be granted to
non-admin users:

Admin assigns read access to the container
The "admin" user can assign read permissions to a group using:

curl -X PUT -v -H 'X-Container-Read: {GROUP LIST}'
 -H 'X-Auth-Token: {TOKEN}'
 http://127.0.0.1:8080/v1/{account}/{container1}"

This command allows users belonging to the GROUP LIST to have read access rights
to container1. For example, to assign read permissions to the group "Member":

curl –X PUT -v –H 'X-Container-Read: Member' –H 'X-Auth-Token:
{ADMIN_TOKEN}'
 http://127.0.0.1:8080/v1/{account}/{container1}

After read permission is granted, users belongs to target group(s) can perform below
operations:

l HEAD container - Retrieve container metadata. Only allowed if user is assigned to
group that has Tenant Administrator privileges.

l GET container - List objects within a container

l GET objects with container - Read contents of the object within the container

Admin assigns write access to the container
The "admin" user can assign read permissions to a group using:

curl -XPUT -v -H 'X-Container-Write: {GROUP LIST}'
 -H 'X-Auth-Token: {TOKEN}'
 http://127.0.0.1:8080/v1/{account}/{container1}"

This command allows users belonging to the GROUP LIST to have write access rights
to container1. For example, to assign write permissions to the group "Member":

curl –X PUT -v –H 'X-Container-Write: Member' –H 'X-Auth-Token:
{ADMIN_TOKEN}'
 http://127.0.0.1:8080/v1/{account}/{container1}

Authorization

80 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

The users in the group GROUP LIST are granted write permission. Once write
permission is granted, users belongs to target group(s) can perform following
operations:

l POST container - Set metadata. Start with prefix "X-Container-Meta".

l PUT objects within container - Write/override objects with container.

Additional information on authorization can be found in: Container Operations

Authorization

Authorization on Container 81

http://ceph.com/docs/master/radosgw/swift/containerops/

Authorization

82 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

PART 3

EMC Atmos

Chapter 13, "Introduction to EMC Atmos support in ECS"

Chapter 14, "Atmos Supported Features"

Chapter 15, "Atmos API Extensions"

EMC Atmos 83

EMC Atmos

84 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

CHAPTER 13

Introduction to EMC Atmos support in ECS

l EMC Atmos API support in ECS...86

Introduction to EMC Atmos support in ECS 85

EMC Atmos API support in ECS
ECS supports a subset of the EMC Atmos API. This part details the supported
operations and the ECS extensions.

The EMC Atmos Object Service is made available on the following ports.

Protocol Ports

HTTP 9022

HTTPS 9023

More information on the supported operations can be found in the Atmos
Programmer’s Guide which is available from EMC Supportzone.

l Atmos Programmer's Guide

Wire format compatibility is provided for all supported operations. Therefore, the
operations described in the Atmos Programmer's Guide apply to the API operations
exposed by ECS.

The Atmos Programmer's Guide also provides information on authenticating with the
Atmos API and provides comprehensive examples for many of the supported features.

Introduction to EMC Atmos support in ECS

86 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

CHAPTER 14

Atmos Supported Features

l Supported EMC Atmos REST API Calls..88
l Unsupported EMC Atmos REST API Calls..89
l Subtenant Support in EMC Atmos REST API Calls.. 90

Atmos Supported Features 87

Supported EMC Atmos REST API Calls
ECS supports a subset of the EMC Atmos API.

The following Atmos REST API calls are supported. Calls for the object and
namespace interfaces are shown.

Table 6 Supported Atmos REST API calls

Method Path Description

Service Operations

GET /rest/service Get information about
the system

Object Operations

POST /rest/objects
/rest/namespace/<path>

Create an object

(See notes below)

DELETE /rest/objects/<ObjectID>
/rest/namespace/<path>

Delete object

PUT /rest/objects/<ObjectID>
/rest/namespace/<path>

Update object

(See notes below)

GET /rest/objects/<ObjectID>
/rest/namespace/<path>

Read object (or directory
list)

POST /rest/namespace/<path>?rename Rename an object

MetaData Operations

GET /rest/objects/<ObjectID>?metadata/user
/rest/namespace/<path>?metadata/user

Get user metadata for an
object

POST /rest/objects/<ObjectID>?metadata/user
/rest/namespace/<path>?metadata/user

Set user metadata

DELETE /rest/objects/<objectID>?metadata/user
/rest/namespace/<path>?metadata/user

Delete user metadata

GET /rest/objects/<ObjectID>?metadata/system
/rest/namespace/<path>?metadata/system

Get system metadata for
an object

GET /rest/objects/<ObjectID>?acl
/rest/namespace/<path>?acl

Get ACL

POST /rest/objects/<ObjectID>?acl
/rest/namespace/<path>?acl

Set ACL

GET /rest/objects/<ObjectID>?metadata/tags
/rest/namespace/<path>?metadata/tags

Get metadata tags for an
object

GET /rest/objects/<ObjectID>?info
/rest/namespace/<path>?info

Get object info

Head /rest/objects/<ObjectID> Get all object metadata

Atmos Supported Features

88 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

Table 6 Supported Atmos REST API calls (continued)

Method Path Description

/rest/namespace/<path>

Object-space Operations

GET /rest/objects List objects

GET /rest/objects?listabletags Get listable tags

Anonymous Access

GET /rest/objects/<ObjectId>?
uid=<uid>&expires=<exp>&signature=<sig>
/rest/namespace/<path>?
uid=<uid>&expires=<exp>&signature=<sig>

Shareable URL

Note

l The x-emc-wschecksum header is supported in ECS.

l HTML form upload is not supported.

l GET /rest/objects does not support different response types with x-emc-
accept. For example, text/plain is not supported.

l Expiration and retention of objects is not supported.

l Read, Write, and Delete ACLs work in ECS the same as Atmos.

Atmos listable tags
Listable tags are special user-defined tags used to list or filter objects. For example, an
application could allow an end user to tag a group of pictures (objects) with a tag like
"Vacation2016". Later the application can respond to a query of "Vacation2016" by
listing only the objects tagged with this listable tag.

In ECS Atmos, a user cannot delete or modify another user's listable tags. Under some
conditions, this ability is allowed in native Atmos.

Listable tags are indexed in ECS, increasing the performance and scalability of the
retrieval of tagged objects.

In ECS, the EMC_TAGS metadata tag is used to persist listable tags. This tag name
should not be used in user-defined metadata tags.

Unsupported EMC Atmos REST API Calls

The following Atmos REST API calls are not supported.

Table 7 Unsupported Atmos REST API calls

Method Path Description

Object Versioning

Atmos Supported Features

Unsupported EMC Atmos REST API Calls 89

Table 7 Unsupported Atmos REST API calls (continued)

Method Path Description

POST /rest/objects/<objectID>?
versions

Create a version of an object

DELETE /rest/objects/<objectID>?
versions

Delete an object version

GET /rest/objects/<objectID>?
versions

List versions of an object

PUT /rest/objects/<objectID>?
versions

Restore object version

Anonymous Access

POST /rest/accesstokens Create an access token

GET /rest/accesstokens/
<token_id>?info

Get access token detail

DELETE /rest/accesstokens/
<token_id>

Delete access token

GET /rest/accesstokens List access tokens

GET /rest/accesstokens/
<token_id>

Download content
anonymously

Subtenant Support in EMC Atmos REST API Calls
ECS includes two native REST API calls that are specifically to add ECS subtenant
support to Atmos applications.

These calls are as follows:

API Call Example

Subtenant create PUT Http url: /rest/subtenant
Required headers: x-emc-uid (for example, x-
emc-uid=wuser1@SANITY.LOCAL) x-emc-
signature.

The subtenantID is set in the header
"subtenantID" of the response.

Subtenant delete DELETE Http url: /rest/subtenants/
{subtenantID}
Required headers: x-emc-uid (for example, x-
emc-uid=wuser1@SANITY.LOCAL) x-emc-
signature

Atmos Supported Features

90 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

Note

Subtenant IDs are preserved in ECS after migration: The header isx-emc-
subtenant-id: {original_subt_id}.

Atmos Supported Features

Subtenant Support in EMC Atmos REST API Calls 91

Atmos Supported Features

92 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

CHAPTER 15

Atmos API Extensions

l API Extensions... 94

Atmos API Extensions 93

API Extensions
A number of extensions to the object APIs are supported.

The extensions and the APIs that support them are listed in the following table.

Table 8 Object API Extensions

Feature Notes

PUT Object (range-
append)

Uses Range header to specify object range appended.

Appending data to an object on page 94

Appending data to an object
An example of using the ECS API extensions to append data to an object is provided
below.

There may be cases where you need to append to an object, but determining the exact
byte offset is not efficient or useful. For this scenario, ECS provides the ability to
atomically append data to the object without specifying an offset (the correct offset
is returned to you in the response).

A Range header with the special value bytes=-1- can be used to append data to an
object. In this way, the object can be extended without knowing the existing object
size.

The format is: Range: bytes=-1-

A sample request showing appending to an existing object using a Range value of
bytes=-1-. Here the value and cat is sent in the request.

PUT /rest/namespace/myObject HTTP/1.1
Content-Length: 8
Range: bytes=-1-
ACCEPT: application/json,application/xml,text/html,application/
octet-stream
Date: Mon, 17 Jun 2013 20:46:01 -0000
x-emc-date: Mon, 17 Jun 2013 20:46:01 -0000
x-emc-namespace: emc
x-emc-uid: fa4e31a68d3e4929bec2f964d4cac3de/wuser1@sanity.local
x-emc-signature: ZpW9KjRb5+YFdSzZjwufZUqkExc=
Content-Type: application/octet-stream
Accept-Encoding: gzip, deflate, compress

and cat

HTTP/1.1 200 OK
x-emc-mtime: 1431626712933
Date: Mon, 17 Jun 2013 20:46:01 GMT
x-emc-policy: default
x-emc-utf8: true
x-emc-request-id: 0af9ed8d:14cc314a9bc:112f6:9
x-emc-delta: 8
x-emc-append-offset: 24
Content-Length: 0
Server: Jetty(7.6.4.v20120524)

Atmos API Extensions

94 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

The offset position at which the data was appended is returned in the x-emc-append-
offset header.

When retrieving the object again, you can see the full value The quick green fox
jumps over the lazy dog and cat. You have appended data to this object.

Atmos API Extensions

Appending data to an object 95

Atmos API Extensions

96 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

PART 4

CAS

Chapter 16, "Setting up CAS support in ECS"

CAS 97

CAS

98 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

CHAPTER 16

Setting up CAS support in ECS

l Setting up CAS support in ECS.. 100
l Cold Storage.. 100
l Compliance... 101
l CAS retention in ECS... 104
l Advanced retention for CAS applications: event-based retention, litigation hold,

and the min/max governor... 106
l Set up namespace retention policies... 112
l Create and set up a bucket for a CAS user.. 113
l Set up a CAS object user...114
l Set up bucket ACLs for CAS... 115
l ECS Management APIs that support CAS users.. 117
l Content Addressable Storage (CAS) SDK API support..................................... 118

Setting up CAS support in ECS 99

Setting up CAS support in ECS
Introduces CAS (content addressable storage) support in ECS.

ECS CAS allows CAS SDK-based client applications to store, retrieve, and delete fixed
content objects from ECS storage.

The underlying ECS storage must be provisioned before you can configure your ECS
set up. Provisioning is usually completed when a new ECS rack is installed. This
includes setting up a storage pool, VDC, and replication group. In ECS CAS, you can
use the standard documentation if you need to create or edit these objects to support
CAS. See Administrators Guide: Configure storage pools, VDCs, and replication
groups .

For your storage pools, you might consider setting up a cold archive. See Cold Storage
on page 100.

Next, set up your namespaces, users, and buckets using the standard documentation:

l Administrators Guide: Configure a namespace

l Administrators Guide: Manage users and roles

l Administrators Guide: Create and manage buckets

This chapter describes how to modify your basic configuration to support CAS.

Cold Storage
Describes cold storage archives.

Cold archives store objects that do not change frequently and do not require the
robust default EC scheme. The EC scheme used for a cold archive is 10 data
fragments plus 2 coding fragments (10/12). The efficiency is 1.2x.

You can specify a cold archive (Cold Storage) when creating a new storage pool. After
the storage pool is created, the EC scheme cannot be changed. This scheme can
support the loss of a single node. It also supports loss of one drive out of six or two
drives out of 12 on two separate nodes.

EC requirements

Table 9 Requirements for regular and cold archives compared

Use case How enabled Minimum
required
nodes

Minimum
required
disks

Recommend
ed disks

EC
efficiency

EC scheme

Regular
archive

Default 4 16* 32 1.33x 12/16

Cold archive Configured by System
Administrator

8 12* 24 1.2x 10/12

Note

*Since the minimum deployable configuration for the C-Series appliance is two
appliances with 12 disks each, 24 disks is the effective minimum.

Setting up CAS support in ECS

100 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

https://community.emc.com/docs/DOC-53956
https://community.emc.com/docs/DOC-53956
https://community.emc.com/docs/DOC-53956
https://community.emc.com/docs/DOC-53956
https://community.emc.com/docs/DOC-53956

Storage pool configuration
To establish a cold archive from the portal, Select Cold Storage when you create a
new storage pool. Once a storage pool has been created, this setting cannot be
changed.

Compliance
Describes ECS features that support government and industry standards for the
storage of electronic records.

ECS meets the storage requirements of the following standards, as certified by
Cohasset Associates Inc:

l Securities and Exchange Commission (SEC) in regulation 17 C.F.R. § 240.17a-4(f)

l Commodity Futures Trading Commission (CFTC) in regulation 17 C.F.R. § 1.31(b)-
(c)

Compliance is certified on ECS Appliances with ECS version 2.2.1 software and later.
Installations of ECS Software Only version 3.0 and later running on ECS-certified
third-party hardware are also certified.

Compliance has three components:

l Platform hardening: addressing common security vulnerabilities.

l Policy-based record retention: limiting the ability to change retention policies for
records under retention.

Setting up CAS support in ECS

Compliance 101

l Compliance reporting: periodic reporting by a system agent records the system's
compliance status.

Platform hardening and Compliance
Describes the ECS security features supporting Compliance standards.

ECS platform security features:

l Root access to nodes is disabled; that is, no logins to the root account are
permitted.

l ECS customers can access nodes through the admin account which is established
at install time.

l Authorized admin account users run commands on nodes using sudo.

l There is full audit logging for sudo commands.

l ESRS provides the ability to shutdown all remote access to nodes. In ESRS Policy
Manager, set the Start Remote Terminal action to Never Allow.

l All unnecessary ports, like ftpd , sshd, and so on are closed.

l The ECS Lock Admin (login: emcsecurity) can lock nodes in a cluster. This
means that remote access over the network by SSH is disabled. The Lock Admin
can then unlock a node to allow for remote maintenance activities or other
authorized access. (Node locking does not affect authorized ECS Portal or ECS
Management API users.) See the ECS Administrator's Guide for information on
locking and unlocking nodes.

Compliance and retention policy
Describes enhanced rules for record retention on a compliance-enabled ECS system.

ECS has object retention features enabled or defined at the object-, bucket-, and
namespace-level. Compliance strengthens these features by limiting changes that can
be made to retention settings on objects under retention. Rules include:

l Compliance is enabled at the namespace-level. This means that all buckets in the
namespace must have a retention period greater than zero. For CAS, buckets with
zero retention can be created, provided that the Enforce Retention Information
in Object setting is enabled.

l Compliance can only be enabled on a namespace when the namespace is created.
(Compliance cannot be added to an existing namespace.)

l Compliance cannot be disabled once enabled.

l All buckets in a namespace must have a retention period greater than zero.

Note

If you have an application that assigns object-level retention periods, do not use
ECS to assign a retention period greater than the application retention period. This
action will lead to application errors.

l A bucket with data in it cannot be deleted regardless of its retention value.

l Using the Infinite option on a bucket mean objects in the bucket in a Compliance-
enabled namespace can never be deleted.

l The retention period for an object cannot be deleted or shortened. Therefore, the
retention period for a bucket cannot be deleted or shortened.

Setting up CAS support in ECS

102 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

l Object and bucket retention periods can be increased.

l No user can delete an object under retention. This includes users with the CAS
privileged-delete permission.

Figure 1 Enable Compliance on a new namespace in the ECS Portal

Compliance agent
Describes the operation of the Compliance agent.

Compliance features are all enabled by default, except for Compliance monitoring. If
monitoring is enabled, the agent periodically logs a message to a thread.

Note

Make arrangements with EMC Customer Support to enable Compliance monitoring.
Monitoring messages are available by command from the node. They do not appear in
the ECS Portal.

Setting up CAS support in ECS

Compliance agent 103

CAS retention in ECS
A CAS C-Clip can have a retention period that governs the length of time the
associated object is retained in ECS storage before an application can delete it.

Retention periods
Retention periods are assigned in the C-Clip for the object by the CAS application.

For example, if a financial document must be retained for three years from its creation
date, then a three-year retention period is specified in the C-Clip associated with the
financial document. It is also possible to specify that the document is retained
indefinitely.

Retention policies (retention classes)

Note

The Centera concept of "retention classes" maps to "retention policies" in ECS. This
documentation uses "retention policies."

Retention policies enable retention use cases to be captured and applied to C-Clips.
For example, different types of documents could have different retention periods. You
could require the following retention periods:

l Financial: 3 years

l Legal: 5 years

l Email: 6 months

When a retention policy is applied to a number of C-Clips, by changing the policy, the
retention period changes for all objects to which the policy applies.

Retention policies are associated with namespaces in ECS and are recognized by the
CAS application as retention classes.

ECS bucket-level retention and CAS
Bucket-level retention is not the default pool retention in Centera. In ECS, CAS
default retention is constantly zero.

Behavior change for default retention period in objects written without object-
level retention in Compliance namespaces
Starting with ECS 3.0, when an application writes C-Clips with no object retention to
an ECS CAS bucket in a Compliance namespace, and the bucket has a retention value
(6 months, for example), the default retention period of infinite (-1) will be assigned to
the C-Clips. The C-Clips can never be deleted because their effective retention period
is the longest one between the two: the bucket-level retention period and the default
object-level retention.

This is a change from ECS 2.2.1 behavior which brings ECS in line with Centera
behavior, where default pool retention in CE+ Compliance mode is always infinite (-1).

In ECS 2.2.1, when an application writes C-Clips with no object retention to an ECS
CAS bucket in a Compliance namespace, and the bucket has a retention value (6
months, for example), the retention period assigned to the C-Clips will be zero (0).
Here, the effective retention period for the C-Clips will be the bucket retention value
(6 months). The C-Clips can be deleted in 6 months.

After upgrading from ECS 2.2.1 to ECS 3.0 or any later version, applications that rely
on the ECS 2.2.1 behavior will be writing C-Clips that can never be deleted.

Setting up CAS support in ECS

104 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

Halt and reconfigure your applications to assign appropriate object-level retention
before they interact with ECS 3.0 or later versions.

In the example above, the application should assign 6 month object-level retention to
the C-Clips.

CAS precedence
When multiple retention periods are applied to a CAS object in ECS, the retention
period with the higher value has precedence no matter how the retention was applied.

How to apply CAS retention
You can define retention polices for namespaces in the ECS Portal or with the ECS
Management API. See Set up namespace retention policies.

Your external CAS application can assign a fixed retention period or a retention policy
to the C-Clip during its creation.

When applying retention periods through APIs, specify the period in seconds.

Note that ECS CAS takes the creation time of the C-Clip for all retention related
calculations and not the migration time.

How to create retention policies with the ECS Management API.
You can create retention periods and policies using the ECS Management REST API, a
summary of which is provided below.

Table 10 ECS Management API resources for retention

Method Description

PUT /object/bucket/{bucketName}/
retention

The retention value for a bucket defines a
mandatory retention period which is applied to
every object within a bucket. If you set a
retention period of 1 year, an object from the
bucket cannot be deleted for one year.

GET /object/bucket/{bucketName}/
retention

Returns the retention period that is currently
set for a specified bucket.

POST /object/namespaces/namespace/
{namespace}/retention

For namespaces, the retention setting acts
like a policy, where each policy is a
<Name>:<Retention period> pair. You can
define a number of retention policies for a
namespace and you can assign a policy, by
name, to an object within the namespace. This
allows you to change the retention period of a
set of objects that have the same policy
assigned by changing the corresponding
policy.

PUT /object/namespaces/namespace/
{namespace}/retention/{class}

Updates the period for a retention period that
is associated with a namespace.

GET /object/namespaces/namespace/
{namespace}/retention

Returns the retention policy defined for a
namespace.

You can find more information about the ECS Management API here: ECS
Management REST API. The online reference is here: ECS Management REST API
Reference.

Setting up CAS support in ECS

CAS retention in ECS 105

http://www.emc.com/techpubs/api/ecs/v3-0-0-0/index.htm
http://www.emc.com/techpubs/api/ecs/v3-0-0-0/index.htm

Advanced retention for CAS applications: event-based
retention, litigation hold, and the min/max governor

Describes advanced retention features available in the CAS API that are supported by
ECS.

Customer applications use the CAS API to enable retention strategies. When CAS
workloads are migrated to ECS, ECS awareness of CAS API features allow the
customer applications to continue working with the migrated data. In ECS, the
following advanced retention management (ARM) features are available without a
separate license:

l Event-based retention: the ability to configure an object through its C-Clip to
apply (trigger) a retention period or retention policy when the CAS application
receives a specified event.

l Litigation hold: the ability to prevent deletion of an object if the CAS application
has applied a litigation hold to the object through its C-Clip. The CAS application
can apply up to 100 litigation holds to an object by creating and applying unique
litigation hold IDs.

l Min/Max governor: The ability for an administrator to set bucket-level limits for
fixed retention period or variable retention period. A variable retention period is
one that is set to support event-based retention. In ECS, System or Namespace
Admins can set the values with the ECS Portal. Programmers can use the ECS
Management API to set the values.

Note

ARM is supported for legacy CAS data written with any naming scheme that is
migrated to ECS.

Min/max governor for CAS bucket-level retention
From the ECS Portal, locate a CAS bucket and select Edit. All the controls shown on
the screen below are CAS-only features except for the Bucket Retention Period
control. Bucket Retention Period is the standard ECS bucket retention feature
supported on all ECS bucket types.

Setting up CAS support in ECS

106 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

Figure 2 Retention options for CAS buckets

The CAS bucket retention features are explained in the following table.

Feature Description

Enforce
Retention
Information in
Object

If this control is enabled, no CAS object can be created without retention
information (period or policy). An attempt to save such an object will

return an error. If it is enabled, it is possible not to configure Bucket
Retention Period even in compliance-enabled environment.

Note

When a CE+ mode Centera is migrated to ECS, Enforce Retention
Information in Object is enabled by default on the bucket.

Bucket Retention
Period

If a bucket retention period is specified, then the longer period will be
enforced if there is both a bucket-level and an object-level retention
period.

In a Compliance-enabled environment Bucket Retention Period is
mandatory unless retention information in the object is enforced.

However, once configured the Bucket Retention Period cannot be
reset even when retention information in the object is enforced.

Minimum Fixed
Retention Period

This feature governs the retention periods specified in objects. If an
object's retention period is outside of the bounds specified here, then an
attempt to write the object fails.
When using retention policies, the min/max settings are not enforced.

Maximum Fixed
Retention Period

Setting up CAS support in ECS

Advanced retention for CAS applications: event-based retention, litigation hold, and the min/max governor 107

Feature Description

Selecting Infinite for Minimum Fixed Retention Period means all

retention values must be infinite. Selecting if for Mamimum Fixed
Retention Period means there is no maximum limit.

Min/max retention constrains are applied to any C-Clip written to a
bucket. If a clip is migrated by any SDK-based third-party tool the
retention should be within bounds, otherwise an error is thrown.

Minimum Variable
Retention Period

This feature governs variable retention periods specified in objects using
event-based retention (EBR). In EBR, a base retention period is set and
the programmed trigger function has the ability to increase the retention
period when the trigger fires. If an object's new retention period is outside
of the bounds specified here, then an attempt to write the object in
response to the trigger fails.
When using retention policies, the min/max settings are not enforced.

Selecting Infinite for Minimum Variable Retention Period means all

retention values must be infinite. Selecting if for Mamimum Variable
Retention Period means there is no maximum limit.

Min/max retention constrains are applied to any C-Clip written to a
bucket. If a clip is migrated by any SDK-based third-party tool the
retention should be within bounds, otherwise an error is thrown.

Maximum
Variable
Retention Period

Note

If the System Adm or programmer has not set any values for the fixed and variable
retention periods, the ECS Management API get function will not return values for
the min/max settings. The Enforce Retention Information in C-Clip will return a
default value of false.

Event-based retention
Event-based retention (EBR) is an instruction specifying that a record cannot be
deleted before an event and during a specified period after the event. In CAS, EBR is a
C-Clip with a specified base retention period or retention policy and an application-
defined trigger that can set a longer retention period when the trigger fires. The
retention period only begins when the trigger fires. When a C-Clip is marked for EBR,
it cannot be deleted prior to the event unless a privileged delete is used.

When using EBR, the C-Clip life-cycle is as follows:

l ·Create: the application creates a new C-Clip and marks it as being under EBR.
The application can provide a fixed retention period which acts as a minimum
retention and it must provide an event based retention period or policy.

l ·Trigger Event: The application triggers the event, which is the starting point of
the event-based retention period or retention policy. At this point the application
can assign a new event-based retention period, provided that it is longer than the
one assigned at the time of the C-Clip creation.

l ·Delete: When the application tries to delete the C-Clip, the following conditions
must be met:

n Policy (Namespace) retention has expired

n Bucket retention has expired

n Fixed retention has expired

Setting up CAS support in ECS

108 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

n The event has been triggered

n Both the EBR set at the time of creation and any subsequent changes
(extensions) at the time of the event have expired

The following figure shows the three possible scenarios for a C-Clip under EBR:

l C1 has a fixed or minimal retention which already expired before the event was
triggered.

l C2 has a fixed or minimal retention which will expire before the EBR expires.

l C3 has a fixed or minimal retention which will expire after the EBR expires.

Figure 3 EBR scenarios

For non-compliant namespaces, privileged delete commands can override fixed and
variable retention for EBR.

When applying EBR retention, it must comply with the Min/Max Governor settings for
the variable retention period.

Table 11 CAS API functions for event-based retention

Function Description

FPClip_EnableEBRWithClass This function sets a C-Clip to be eligible to
receive a future event and enables an event-
based retention (EBR) class to be assigned to
the C-Clip during C-Clip creation time.

FPClip_EnableEBRWithPeriod This function sets a C-Clip to be eligible to
receive a future event and enables an event-
based retention (EBR) period to be assigned to
the C-Clip during C-Clip creation time.

FPClip_IsEBREnabled This function returns a Boolean value to indicate
whether or not a C-Clip is enabled for event-
based retention (EBR).

Setting up CAS support in ECS

Advanced retention for CAS applications: event-based retention, litigation hold, and the min/max governor 109

Table 11 CAS API functions for event-based retention (continued)

Function Description

FPClip_GetEBRClassName This function retrieves the name of the event-
based retention (EBR) policy assigned to the C-
Clip.

FPClip_GetEBREventTime This function returns the event time set on a C-
Clip when the event-based retention (EBR)
event for that C-Clip was triggered.

FPClip_GetEBRPeriod This function returns the value (in seconds) of
the event-based retention (EBR) period
associated with a C-Clip.

FPClip_TriggerEBREvent This function triggers the event of a C-Clip for
which event-based retention (EBR) was
enabled.

FPClip_TriggerEBREventWithClass This function triggers the event of a C-Clip for
which event-based retention (EBR) was enabled
and assigns a new EBR policy to the C-Clip.

FPClip_TriggerEBREventWithPeriod This function triggers the event of a C-Clip for
which event-based retention (EBR) was enabled
and assigns a new EBR period to the C-Clip.

Litigation hold
Litigation hold allows CAS applications to temporarily prevent deletion of a C-Clip.
Litigation hold is useful for data that is subject to an official investigation, subpoena,
or inquiry and that may not be deleted until the investigation is over. Once there is no
need to hold the data, the litigation hold can be released by the application and normal
retention behavior resumes. The CAS application places and removes a litigation hold
at the C-Clip level.

Note

Even a privileged delete cannot delete a C-Clip under litigation hold.

One C-Clip can be under several litigation holds. The application must generate unique
litigation hold IDs and be able to track the specific litigation holds associated with a C-
Clip. The application cannot query a C-Clip for this information. There is only a
function that determines the litigation hold state of the C-Clip. If there is one or
several litigation holds on the C-Clip, this function returns true, otherwise, it is false.

When using litigation hold, the C-Clip life-cycle is as follows:

l Create: The application creates a new C-Clip and provides a fixed and/or event-
based retention period.

l Set litigation hold: An application puts the C-Clip on hold. This application can be
different from the application that wrote the C-Clip.

l Release litigation hold: An application releases the C-Clip. This application can be
different from the application that sets the litigation hold or wrote the C-Clip.

l Delete: When the application tries to delete the C-Clip, the following conditions
must be satisfied:

n There are no other litigation holds outstanding on the C-Clip.

Setting up CAS support in ECS

110 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

n Policy retention has expired.

n Standard bucket retention has expired. (Standard bucket retention is available
to all ECS object types, but is not recommended for CAS.)

n Fixed retention period has expired (CAS-only feature).

n Event-based retention has expired (CAS-only feature).

The following figure shows the three possible scenarios for a C-Clip put under
litigation hold:

l C1 has a fixed retention that already expired when put under hold.

l C2 has a fixed retention that expires during the hold.

l C3 has a fixed retention that will expire after release of the hold.

Figure 4 Litigation Hold scenarios

A C-Clip can have multiple litigation holds assigned to it. If this is the case, each
litigation hold requires a separate API call with a unique identifier for the litigation
hold.

Note

The maximum size of litigation hold ID is 64 characters. The maximum litigation hold
IDs per C-Clip is 100. These limitations are enforced by the CAS API.

Table 12 CAS API functions for litigation hold

Function Description

FPClip_GetRetentionHold This function determines the hold state of
the C-Clip and returns true or false.

FPClip_SetRetentionHold This function sets or resets a retention hold
on a C-Clip. For multiple litigation holds,
provide a unique litigation hold ID for each
hold. For multiple holds, make one call per
ID.

Setting up CAS support in ECS

Advanced retention for CAS applications: event-based retention, litigation hold, and the min/max governor 111

Set up namespace retention policies
Provides CAS-specific set up instructions for namespace retention policies.

The Retention Policy feature for namespace provides a way to define and manage
CAS retention classes for all C-Clips created in the namespace.

A namespace can have many retention polices, where each policy defines a retention
period. By applying a retention policy to a number of C-Clips (with the API), a change
to the retention policy changes the retention period for all objects associated with the
policy. For CAS, retention classes are applied to an object's C-Clip by the application.
If an object is under a retention period, requests to modify the object are not allowed.

Procedure

1. At the ECS portal, select Manage > Namespace.

2. To edit the configuration of an existing namespace, choose the Edit action
associated with the existing namespace.

3. Add and Configure Retention Policies.

a. In the Retention Policies area, select Add to add a new policy.

b. Enter a name for the policy.

c. Specify the period for the Retention Policy.

Select the Infinite checkbox to ensure that objects with this policy are
never deleted.
Figure 5 New Retention Policy

4. Select Save.

Setting up CAS support in ECS

112 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

Figure 6 Retention policies for a namespace

Create and set up a bucket for a CAS user
Configure a bucket to support a CAS user.

In ECS, management users create buckets and become the bucket owners. For CAS,
object users need to be set up as bucket owners. Follow this procedure to properly set
up a CAS bucket and make the CAS user the bucket owner. In this example,
newcasadmin1 is a management user, newcasuser1 is a CAS object user, and
newcasns1 is the namespace. The procedure assumes the two users and namespace
have been set up.

Procedure

1. Login to the ECS Portal as newcasadmin1.

2. At the ECS portal, select Manage > Bucket.

3. Choose New Bucket.

4. Fill in the fields as shown below:

Field Value

Replication Group Your replication group

Set current user as Bucket Owner Check

CAS Enabled

5. Choose Save.

6. Select Manage > User.

7. Make sure the Object User tab is active, search for newcasuser1 and choose
Edit.

8. In Default Bucket, type newcasbucket1 and choose Set Bucket.

9. Choose Close.

10. Select Manage > Bucket.

11. Search for newcasbucket1 and choose Edit bucket.

12. In Bucket Owner, type newcasuser1.

13. Choose Save.

Setting up CAS support in ECS

Create and set up a bucket for a CAS user 113

Set up a CAS object user
Set up an object user to use CAS.

When you set up an object user, you can assign CAS features to the profile that make
up the elements of a CAS profile. You will be able to view the resulting PEA file for use
in your CAS applications.

Procedure

1. At the ECS portal, select Manage > Users.

2. To edit the configuration of an existing object user, choose the Edit action
associated with the user.

Figure 7 CAS settings for object users

3. In the CAS area, type a password (secret) or choose Generate to have the
portal create one for you.

4. Choose Set Password.

5. Choose Generate PEA File to generate the PEA file your application will need
to authenticate to the CAS storage on ECS.

6. By setting a default bucket, every action the user takes that does not specify a
bucket will use the specified default bucket. Type the name of the default
bucket and choose Set Bucket.

7. Choose Add Attribute to add a metadata tag to the user.

8. Add the metadata tag name and value.

See the CAS SDK documentation for more info on metadata tags.

9. Choose Save Metadata.

Setting up CAS support in ECS

114 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

Set up bucket ACLs for CAS
Edit a bucket's access control list to limit a user's access.

Some ECS bucket ACLs map to CAS permissions and some have no meaning for CAS
data.

Procedure

1. At the ECS portal, select Manage > Bucket.

2. To edit the ACLs of an existing bucket, choose the Edit ACL action associated
with the existing bucket.

Figure 8 Edit bucket ACL

3. Choose the Edit associated with the user.

Setting up CAS support in ECS

Set up bucket ACLs for CAS 115

Figure 9 Bucket ACLs Management

4. Modify the permissions.

Table 13 Bucket ACLs

ECS ACL ACL definition

READ Read, Query, and Exist capabilities

WRITE Write and Litigation Hold capabilities

FULL_CONTROL Read, Delete, Query, Exist, Clip Copy, Write,
Litigation Hold

PRIVILEDGED_WRITE Privileged Delete

DELETE Delete

Note

Other ECS ACLs have no meaning to CAS.

Setting up CAS support in ECS

116 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

5. Select Save.

6. You can also edit the ACLs at the group level. Groups are predefined and
membership in the group is automatic based on user criteria. Choose Group
ACLs.

7. Choose Add.

8. Select the group you want to edit from the Group Name list.

Table 14 Bucket ACL groups

Bucket ACL group Description

public All users authenticated or not.

all users All authenticated users.

other Authenticated users but not the bucket
owner.

log delivery Not supported.

9. Edit the ACLs and select Save.

ECS Management APIs that support CAS users
Describes ECS Management API resources that you can use to manage CAS user and
profile settings.

ECS Management API resource descriptions:

l GET /object/user-cas/secret/{uid} : Gets the CAS secret for the
specified user.

l GET /object/user-cas/secret/{namespace}/{uid}: Gets the CAS
secret for the specified namespace and user.

l POST /object/user-cas/secret/{uid}: Creates or updates the CAS secret
for a specified user.

l GET /object/user-cas/secret/{namespace}/{uid}/pea: Generates a
PEA file for the specified user.

l POST /object/user-cas/secret/{uid}/deactivate: Deletes the CAS
secret for a specified user.

l GET /object/user-cas/bucket/{namespace}/{uid}: Gets the default
bucket for the specified namespace and user.

l GET /object/user-cas/bucket/{uid}: Gets the default bucket for a
specified user.

l POST /object/user-cas/bucket/{namespace}/{uid}: Updates the
default bucket for the specified namespace and user.

l GET /object/user-cas/applications/{namespace}: Gets the CAS
registered applications for a specified namespace.

l POST /object/user-cas/metadata/{namespace}/{uid}: Updates the
CAS registered applications for a specified namespace and user.

l GET /object/user-cas/metadata/{namespace}/{uid}: Gets the CAS
user metadata for the specified namespace and user.

Setting up CAS support in ECS

ECS Management APIs that support CAS users 117

See the ECS Management REST API Reference for more information.

Content Addressable Storage (CAS) SDK API support
Supported versions
ECS supports the CAS build 3.1.544 or higher. Additionally you should verify that your
ISV’s application supports ECS.

More information on ECS CAS support is provided in Configure support for CAS SDK
applications with the ECS Portal.

CAS Query support
CAS Query is supported beginning with ECS 2.2.

Note

In ECS, CAS Query operations return results based on the creation time of the existing
C-Clip and the deletion time of the deleted C-Clip (reflection). In EMC Centera, query
operations return results based on the write-time of the object.

Unsupported APIs in ECS versions before ECS 3.0
CAS SDK API calls not supported in versions of ECS prior to ECS 3.0:

l FPClip_EnableEBRWithClass

l FPClip_EnableEBRWithPeriod

l FPClip_SetRetentionHold

l FPClip_TriggerEBREvent

l FPClip_ TriggerEBREventWithClass

l FPClip_ TriggerEBREventWithPeriod

l FPClip_GetEBRClassName

l FPClip_GetEBREventTime

l FPClip_GetEBRPeriod

l FPClip_GetRetentionHold

l FPClip_IsEBREnabled

Setting up CAS support in ECS

118 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

http://www.emc.com/techpubs/api/ecs/v3-0-0-0/index.htm

PART 5

ECS Management API

Chapter 17, "Introduction to the ECS Management REST API"

Chapter 18, "Authentication with the ECS Management Service"

Chapter 19, "ECS Management REST API Summary"

ECS Management API 119

ECS Management API

120 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

CHAPTER 17

Introduction to the ECS Management REST API

l ECS Management REST API...122

Introduction to the ECS Management REST API 121

ECS Management REST API
This part describes how to access the ECS Management REST API, it describes how
to authenticate with it, and provides a summary of the API paths. The ECS
Management REST API enables the object store to be configured and managed. Once
the object store is configured, subsequent object create, read, update, and delete
operations are performed using the ECS-supported object and file protocols.

You can refer to the following topic to get an understanding of how to access the
REST API and how to authenticate:

l Authenticate with the ECS Management REST API on page 124

and the API paths are summarized in:

l ECS Management REST API summary on page 130

In addition, an API Reference is provided in:

l ECS Management REST API Reference

The ECS Management REST API Reference is auto-generated from the source code
and provides a reference for the methods available in the API.

Introduction to the ECS Management REST API

122 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

http://www.emc.com/techpubs/api/ecs/v3-0-0-0/index.htm
http://www.emc.com/techpubs/api/ecs/v3-0-0-0/index.htm

CHAPTER 18

Authentication with the ECS Management
Service

l Authenticate with the ECS Management REST API..124

Authentication with the ECS Management Service 123

Authenticate with the ECS Management REST API

ECS uses a token-based authentication system for all its REST API calls. Examples are
provided for authentication with the ECS REST API, with cookies and without cookies.

Once a user is authenticated against ECS, an authentication token is returned and can
be used to authenticate the user in subsequent calls.

l An HTTP 401 code is returned if the client is automatically following redirects,
indicating that you need to login and authenticate to obtain a new token.

l An HTTP 302 code is returned if the client is not automatically following redirects.
The 302 code directs the client to where to get re-authenticated.

You can retrieve and use authentication tokens by:

l Saving the X-SDS-AUTH-TOKEN cookie from a successful authentication request
and sending that cookie along in subsequent requests.

l Reading the X-SDS-AUTH-TOKEN HTTP header from a successful authentication
request and copying that header into any subsequent request.

The REST API is available on port :4443 and clients access ECS by issuing a login
request in the form:

https://<ECS_IP>:4443/login

Authenticate with AUTH-TOKEN
This example shows how to use authentication tokens by reading the X-SDS-AUTH-
TOKEN http header from a successful authentication request and copying that header
into a subsequent request. This example does not use cookies. The examples here are
written in curl and formatted for readability.

This command executes a GET on the /login resource. The -u option indicates the
user of basic authentication header. The user designation must be included in the
request. Upon successful authentication, a HTTP 200 code is returned as well as the
X-SDS-AUTH-TOKEN header containing the encoded token.

The default management API token lifetime is 8 hours, which means that after 8 hours
the token is no longer valid. The default idle time for a token is 2 hour; after a 2 hour
idle time, the token will expire. If a user uses an expired token, they will be redirected
to the "/login" URL and subsequent use of the expired token will cause HTTP status
error code 401 to be returned.

curl -L --location-trusted -k https://10.247.100.247:4443/login -u
"root:ChangeMe" -v

> GET /login HTTP/1.1
> Authorization: Basic cm9vdDpDaGFuZ2VNZQ==
> User-Agent: curl/7.24.0 (i386-pc-win32) libcurl/7.24.0 OpenSSL/
0.9.8t zlib/1.2.5
> Host: 10.247.100.247:4443
> Accept: */*
>
< HTTP/1.1 200 OK
< Date: Tue, 26 Nov 2013 22:18:25 GMT
< Content-Type: application/xml
< Content-Length: 93
< Connection: keep-alive

Authentication with the ECS Management Service

124 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

< X-SDS-AUTH-TOKEN:
BAAcQ0xOd3g0MjRCUG4zT3NJdnNuMlAvQTFYblNrPQMAUAQADTEzODU0OTQ4NzYzNTIC
AAEABQA5dXJu

OnN0b3JhZ2VvczpUb2tlbjo2MjIxOTcyZS01NGUyLTRmNWQtYWZjOC1kMGE3ZDJmZDU3
MmU6AgAC0A8=
<
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<loggedIn>
 <user>root</user>
</loggedIn>
* Connection #0 to host 10.247.100.247 left intact
* Closing connection #0
* SSLv3, TLS alert, Client hello (1):

The token can then be passed back in the next API call. You can copy the X-SDS-
AUTH-TOKEN contents and pass it to the next request through curl's -H switch.

curl https://10.247.100.247:4443/object/namespaces
 -k
 -H "X-SDS-AUTH-TOKEN:
BAAcOHZLaGF4MTl3eFhpY0czZ0tWUGhJV2xreUE4PQMAUAQADTEzODU0OTQ4NzYzNTIC
AAEABQA5dXJu

OnN0b3JhZ2VvczpUb2tlbjpkYzc3ODU3Mi04NWRmLTQ2YjMtYjgwZi05YTdlNDFkY2Qw
ZDg6AgAC0A8="

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<namespaces>
 <namespace>
 <id>ns1</id>
 <link rel="self" href="/object/namespaces/namespace/ns1"/>
 <names>ns1</name>
 </namespace>
</namespaces>

Authenticate with cookies
This example shows how to use authentication tokens by saving the cookie from a
successful authentication request, then passing the cookie in a subsequent request.
The examples here are written in curl and formatted for readability.

In this example, you specify the ?using-cookies=true parameter to indicate that you
want to receive cookies in addition to the normal HTTP header. This curl command
saves the authentication token to a file named cookiefile in the current directory.

curl -L --location-trusted -k https://<ECS_IP>:4443/login?using-
cookies=true
-u "root:Password"
-c cookiefile
-v

The next command passes the cookie with the authentication token through the -b
switch, and returns the user's tenant information.

curl -k https://10.247.100.247:4443/object/namespaces -b cookiefile
-v

Authentication with the ECS Management Service

Authenticate with cookies 125

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<namespaces>
 <namespace>
 <id>ns1</id>
 <link rel="self" href="/object/namespaces/namespace/ns1"/>
 <names>ns1</name>
 </namespace>
</namespaces>

Logout
The logout API ends a session.

A given user is allowed a maximum of 100 concurrent authentication tokens. Past this
limit, the system refuses any new connection for this user until tokens free up. They
can free up by expiring naturally, or by explicitly calling this URI:

https://<ECS_IP>:4443/logout

If you have multiple sessions running simultaneously, this URI forces the termination
of all tokens related to the current user.

GET https://<ECS_IP>:4443/logout?force=true

An example logout request follows.

Request

GET https://<ECS_IP>:4443/logout

X-SDS-AUTH-TOKEN:{Auth_Token}

Pass in the header or cookie with the authentication token to logout.

Response

HTTP 200

Whoami
An ECS user can view their own user name, tenant association, and roles using the
whoami API call.

Request

GET https://<ECS_IP>:4443/user/whoami

Response

HTTP 200

GET /user/whoami

Authentication with the ECS Management Service

126 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

<user>
 <common_name>root</common_name>
 <distinguished_name/>
 <namespace/>
 <roles>
 <role>SYSTEM_ADMIN</role>
 </roles>
</user>

HTTP 200

GET /user/whoami
<user>
 <common_name>fred@corp.sean.com</common_name>
 <distinguished_name/>
 <namespace>ns1</namespace>
 <roles>
 <role>NAMESPACE_ADMIN</role>
 </roles>
</user>

This example shows the whoami output for the root user and for a user who has been
assigned to the NAMESPACE_ADMIN role for the "ns1" namespace.

Authentication with the ECS Management Service

Whoami 127

Authentication with the ECS Management Service

128 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

CHAPTER 19

ECS Management REST API Summary

l ECS Management REST API summary... 130

ECS Management REST API Summary 129

ECS Management REST API summary
The ECS Management REST API enables the ECS object store to be configured and
managed.

The following table summarizes the ECS Management REST API.

Table 15 ECS Management REST API- methods summary

API Area Description

Configuration

Certificate /object-cert
API for managing certificates.

/object-cert/keystore
API to enable the certificate chain used by EMC to be specified and
for the certificate to be rotated.

Configuration
Properties

/config/object/properties
API to enable the user scope to be set as GLOBAL or NAMESPACE.

In GLOBAL scope, users are global and are can be shared across
namespaces. In this case, the default namespace associated with a
user determines the namespace for object operations and there is no
need to supply a namespace for an operation. If the user scope is
NAMESPACE, a user is associated with a namespace, so there might
be more than user with the same name, each associated with a
different namespace. In NAMESPACE mode a namespace must be
provided for every operation.

Must be set before the first user is created. The default is GLOBAL.

Licensing /license
API to enable a license to be added and license details to be retrieved.

Feature /feature/
API for retrieving the details for a feature.

Syslog /vdc/syslog/config
API for managing Syslog configuration and sending alerts to Syslog
server for troubleshooting and debugging purposes.

SNMP /vdc/snmp/config
API for managing SNMP configuration and sending alerts to SNMP
server for troubleshooting and debugging purposes.

CAS

CAS User Profile /object/user-cas
API to enable secret keys to be assigned to CAS users and enables
Pool Entry Authorization (PEA) file to be generated.

File System Access

ECS Management REST API Summary

130 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

Table 15 ECS Management REST API- methods summary (continued)

API Area Description

NFS /object/nfs
API to enable the creation of an NFS export based on an ECS bucket
and to enable acxess to the export by Unix users and groups.

Metering

Billing /object/billing
API to enable the metering of object store usage at the tenant and
bucket level. See Administrators Guide: Manage tenants for more
information.

Migration

Transformation /object/transformation
API to enable data transformation.

Monitoring

Capacity /object/capacity
API for retrieving the current managed capacity.

Dashboard

Alerts /vdc/alerts
API for retrieving audit alerts.

Events /vdc/events
API to return the audit events for a specified namespace.

Multi-tenancy

Namespace /object/namespaces
API to enable a namespace to be created and managed.

Also enables the retention period for the namespace to be set. See
Administrators Guide: Manage tenants for more information.

Geo-replication

Replication Group /data/data-service/vpools
API to enable the creation and administration of replication groups.

Temporary Failed
Zone

/tempfailedzone/
API to enable all temporary failed zones or the temporary failed zones
for a specified replication group to be retrieved.

Provisioning

Base URL /object/baseurl
API to enable the creation of a Base URL that allows existing
applications to work with the ECS object store. More information on
Base URL can be found in: Administrators Guide: Set the Base URL .

ECS Management REST API Summary

ECS Management REST API summary 131

https://community.emc.com/docs/DOC-53956
https://community.emc.com/docs/DOC-53956
https://community.emc.com/docs/DOC-53956

Table 15 ECS Management REST API- methods summary (continued)

API Area Description

Bucket /object/bucket
API for provisioning and managing buckets.

/object/bucket/{bucketName}/lock
API to enable bucket access to be locked. See Administrators Guide:
Manage tenants for more information.

Data Store /vdc/data-stores
API to enable the creation of data stores on file systems (/vdc/
data-stores/filesystems) or on commodity nodes (/vdc/
data-stores/commodity).

Node /vdc/nodes
API for retrieving the nodes that are currently configured for the
cluster.

Storage Pool /vdc/data-services/varrays
API to allow the creation and management of storage pools.

Virtual Data Center /object/vdcs
Enables a VDC to be added and its inter VDC endpoints and secret key
to be specified for replication of data between ECS sites.

VDC Keystore /vdc/keystore
API for managing the certificates for a VDC.

Support

Call Home /vdc/callhome/
API to enable ConnectEMC to be configured and create alert events
for ConnectEMC.

CLI Package /cli
API to download the ECS package.

User Management

Authentication
Provider

/vdc/admin/authproviders
API to enable authentication providers to be added and managed.

Password Group
(Swift)

/object/user-password
API to enable a password to be generated for use with OpenStack
Swift authentication.

Secret Key /object/user-secret-keys
API to allow secret keys to be assigned to object users and to enable
secret keys to be managed.

Secret Key Self-
Service

/object/secret-keys

ECS Management REST API Summary

132 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

https://community.emc.com/docs/DOC-53956
https://community.emc.com/docs/DOC-53956

Table 15 ECS Management REST API- methods summary (continued)

API Area Description

API to allow S3 users to create a new secret key that enables them to
access objects and buckets within their namespace in the object
store.

User (Object) /object/users
API for creating and managing object users. Object users are always
associated with a namespace. The API returns a secret key that can
be used for S3 access. An object user assigned an S3 secret key can
change it using the REST API.

/object/users/lock.

Enables user access to be locked.

User (Management) /vdc/users
API for creating and managing management users. Management users
can be assigned to the System Admin role or to the Namespace Admin
role. Local management user password can be changed.

ECS Management REST API Summary

ECS Management REST API summary 133

ECS Management REST API Summary

134 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

PART 6

HDFS

Chapter 20, "What is ECS HDFS?"

Chapter 21, "Create a bucket for the HDFS filesystem"

Chapter 22, "Use Hortonworks Ambari to set up Hadoop with ECS HDFS"

Chapter 23, "Configure ECS HDFS integration with a simple Hadoop cluster"

Chapter 24, "Configure ECS HDFS integration with a secure (Kerberized) Hadoop
cluster"

Chapter 25, "Guidance on Kerberos configuration"

Chapter 26, "Troubleshooting"

Chapter 27, "Hadoop core-site.xml properties for ECS HDFS"

Chapter 28, "Secure bucket metadata example"

HDFS 135

HDFS

136 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

CHAPTER 20

What is ECS HDFS?

l What is ECS HDFS?... 138
l Configuring Hadoop to use ECS HDFS .. 139
l ECS HDFS URI for file system access.. 140
l Hadoop authentication modes.. 140
l Migration from a simple to a Kerberos Hadoop cluster......................................144
l File system interaction..144
l Supported and unsupported Hadoop applications...145

What is ECS HDFS? 137

What is ECS HDFS?
ECS HDFS is a Hadoop Compatible File System (HCFS) that enables you to run
Hadoop 2.X applications on top of your ECS storage infrastructure.

You can configure your Hadoop distribution to run against the built-in Hadoop file
system, against ECS HDFS, or any combination of HDFS, ECS HDFS, or other Hadoop
Compatible File Systems available in your environment. The following figure illustrates
how ECS HDFS integrates with an existing Hadoop cluster.

Figure 10 ECS HDFS integration in a Hadoop cluster

Hadoop Cluster

Resource
Manager

Hadoop Client

ECS Client Library

Node Manager

MapReduce
Task

Appliance Commodity

MapReduce Request

Node Manager

MapReduce
Task

Node Manager

MapReduce
Task

ECS data
nodes

ECS data
nodes

ECS data
nodes

ECS Client Library ECS Client Library

In a Hadoop environment configured to use ECS HDFS, each of the ECS HDFS data
nodes functions as a traditional Hadoop NameNode which means that all of the ECS
HDFS data nodes are capable of accepting HDFS requests and servicing them.

When you set up the Hadoop client to use ECS HDFS instead of traditional HDFS, the
configuration points to ECS HDFS to do all the HDFS activity. On each ECS HDFS
client node, any traditional Hadoop component would use the ECS HDFS Client
Library (the ViPRFS JAR file) to perform the HDFS activity.

What is ECS HDFS?

138 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

To integrate ECS HDFS with an existing Hadoop environment, you must have the
following:

l A Hadoop cluster already installed and configured. The following distributions are
supported:

n Hortonworks 2.0, 2.1, 2.2, 2.3

Note

HDFS on ECS has not been officially certified by Cloudera or Pivotal HD. This is
part of the future ECS Hadoop roadmap.

When using the Hortonworks distribution, you can use Hortonworks Ambari.
Hortonworks 2.3 (Hadoop 2.7) comes complete with an ECS stack that can be
enabled to simplify integration with ECS HDFS. The instruction for using this
distribution are provided in: Deploying a Hortonworks cluster with Ambari on page
156.

l Hadoop installed and configured to support ECS HDFS, which requires:

n One or more filesystem enabled buckets used for HDFS access.

n The ECS Client Library deployed to the cluster.

l For a Hadoop cluster that uses Kerberos or Kerberos with Active Directory.

n Kerberos service principals deployed to the ECS nodes

n Secure metadata deployed to the bucket.

Configuring Hadoop to use ECS HDFS
Hadoop stores system configuration information in a number of files, such as core-
site.xml, hdfs-site.xml, hive-site.xml, etc. Editing core-site.xml is a
required part of the ECS HDFS configuration.

There are several types of properties to add or modify in core-site.xml including:

l ECS HDFS Java classes: This set of properties defines the ECS HDFS
implementation classes that are contained in the ECS HDFS Client Library. They
are required.

l File system location properties: These properties define the file system URI
(scheme and authority) to use when running Hadoop jobs, and the IP addresses to
the ECS data nodes for a specific ECS file system.

l Kerberos realm and service principal properties: These properties are required only
when you are running in a Hadoop environment where Kerberos is present. These
properties map Hadoop and ECS HDFS users.

core-site.xml resides on each node in the Hadoop cluster. You must add the same
properties to each instance of core-site.xml.

Note

When modifying configuration files, it is always recommended to use the management
interface rather than hand-editing files. In addition, changes made using the
management interface are persisted across the cluster.

What is ECS HDFS?

Configuring Hadoop to use ECS HDFS 139

ECS HDFS URI for file system access
After you configure Hadoop to use the ECS file system, you can access it by
specifying the ECS HDFS URI with viprfs:// as the scheme and a combination of
ECS bucket, tenant namespace, and user-defined installation name for the authority.

The ECS HDFS URI looks like this:

viprfs://bucket_name.namespace.installation/path

The bucket_name corresponds to a HDFS-enabled bucket. It contains the data you
want to analyze with Hadoop. The namespace corresponds to a tenant namespace,
and the installation_name is a name you assign to a specific set of ECS nodes or a load
balancer. ECS HDFS resolves the installation_name to a set of ECS nodes or to a load
balancer by using the fs.vipr.installation.[installation_name].hosts property, which
includes the IP addresses of the ECS nodes or load balancer.

If the installation_name maps to a set of ECS ECS nodes, you can specify how often
to query ECS for the list of active nodes by setting the fs.vipr.installation.
[installation_name].resolution to dynamic, and the fs.vipr.installation.
[installation_name].resolution.dynamic.time_to_live_ms to specify how often to query
ECS for the list of active nodes.

You can specify the ECS HDFS URI as the default file system in core-site.xml, for
both simple and Kerberos environments, by setting it as the value of the
fs.defaultFS property, but this is not a requirement. Where ECS HDFS is not the
default file system, you must use the full URI including the path each time you access
ECS data. If you have existing applications that already use a different default file
system, you need to update those applications.

Hadoop authentication modes
Hadoop supports two different modes of operation for determining the identity of a
user, simple and Kerberos.

Simple

In simple mode, the identity of a client process is determined by the host
operating system. On Unix-like systems, the user name is the equivalent of
`whoami`.

Kerberos

In Kerberized operation, the identity of a client process is determined by its
Kerberos credentials. For example, in a Kerberized environment, a user may use
the kinit utility to obtain a Kerberos ticket-granting-ticket (TGT) and use klist to
determine their current principal. When mapping a Kerberos principal to an HDFS
username, using auth_to_local Hadoop property, all components except for the
primary are dropped. For example, a principal todd/
foobar@CORP.COMPANY.COM will act as the simple username todd on HDFS.

ECS HDFS integrates with Hadoop clusters configured to use either simple or
Kerberos authentication modes.

When the Hadoop cluster is secured using uses Kerberos, ECS can be configured to
grant access to users with Kerberos principals in the form user@REALM.COM,
alternatively, where ECS uses AD to authenticate users, a one-way trust can be

What is ECS HDFS?

140 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

configured between the Kerberos environment and AD so that users can authenticate
using their AD credentials, in the form user@DOMAIN.COM.

Files and directories permissions are determined by the umask (fs.permissions.umask-
mode). The recommended umask is 022.

Accessing the bucket as a file system
The HDFS file system storage is provided by an ECS bucket. When you create a
bucket you tell ECS to make it available as a file system.

In granting access to the file system, ECS (through the ECS Client Library) uses the
permissions configured against the bucket and settings within the Hadoop core-
site.xml file to determine access. You need to ensure that you have configured
sufficient access to enable Hadoop users and services to be able to create files and
directories in the root filesystem (the bucket).

The bucket owner is the owner of the root filesystem and the permissions assigned to
that owner on the bucket translate to permissions on the root filesystem. In addition,
bucket ACLs need to be assigned so that every user that is required to access the
HDFS filesystem has permission on the bucket. This can be done by explicitly adding a
user ACLs for every user on the bucket, or by specifying custom group ACLs. See
Bucket Custom Group ACLs and Default Group on page 141. The owner of the bucket
must be an ECS object user, other users do not and can be Unix usernames from the
Hadoop cluster.

Once users have access to the file system, either because they own it, or have been
added as a user to the bucket, or because they are a member of the group that the
filesystem belongs to, the files and directories that they create will have permissions
determined by the umask property in core-site.xml.

ECS also supports the superuser and supergroup mechanism for enabling access to
HDFS.

Bucket Custom Group ACLs and Default Group
You can enable access to the bucket based on user ACLs or by assigning Custom
Group ACLs. Custom groups are names of user groups as defined on the Hadoop
cluster and enable Hadoop users to access the bucket using HDFS.

Typical groups defined on the Hadoop cluster are hdfs (with user hdfs), hadoop
(typically includes all service users), and users (includes other non-service users that
will access applications on the Hadoop cluster) and you can create corresponding
groups at the ECS Portal and assign permissions to them.

It is also possible to assign a Default Group for the bucket. The Default Group will be
the group assigned to the root '/' filesystem. For example, if your bucket owner is hdfs
and the Default Group is set to hadoop, '/' will be set to hdfs:hadoop as user and
group, respectively. A Default Group is also a custom group and will display in the
Custom Group ACL list.

If a Default Group is not defined, the root of the filesystem has no group as shown
below.

drwx---rwx+ - hdfs 0 2015-12-09 12:30 /

What is ECS HDFS?

Accessing the bucket as a file system 141

If a Default Group of "hadoop" is defined, the ownership and permissions will be as
show below.

drwxrwxrwx+ - hdfs hadoop 0 2015-12-09 12:28 /

These permissions are not inherited by directories created in the root.

If a Default Group is not assigned, the bucket owner (the owner of the root file
system) can assign a group when accessing the HDFS from Hadoop using hdfs dfs -
chgrp and hdfs dfs -chmod.

Hadoop superuser and supergroup

The superuser in a Hadoop environment is the user that starts the namenode, usually
hdfs or hdfs@REALM.COM. As far as the ECS HDFS is concerned, the superuser is
the owner of the bucket. Hence, if you want the Hadoop superuser to have superuser
access to the ECS bucket, you should ensure that the bucket is owned by hdfs, or
hdfs@REALM.COM, or hdfs@DOMAIN.COM if you are using Active Directory to
authenticate users in the Hadoop environment.

To ensure that the Hadoop client has superuser access, you can also configure a
superuser group using the dfs.permissions.superusergroup property in core-
site.xml. In simple mode, the check to determine if a user is a member of the
supergroup is made on the client by checking the value of the
dfs.permissions.supergroup hadoop property. In Kerberos mode, the check to
determine if a user is a member of the supergroup is made on the ECS server.

In general, when buckets are configured for access by the Hadoop superuser or by a
Hadoop superuser group, the superuser will have full (read and write) access to the
bucket. Users without superuser privileges will normally have read access, but that will
depend on how the bucket was created. A user does not have to be an ECS object
user to be granted access to the bucket. The name needs to match a Unix local,
Kerberos, or AD user (depending on authentication mode being used).

It is a best practice to ensure that the hdfs user or hdfs principal either be the bucket
owner (superuser), or a member of a superuser group.

Multi-protocol (cross-head) access
ECS supports the ability to write data to a bucket using the S3 protocol and to make
that data available as files through HDFS.

Multi-protocol access (also referred to as cross-head access) means objects written
to the bucket using the S3 protocol can become the subject of Hadoop jobs, such as
MapReduce. Similarly, directories and files written by HDFS can be read and modified
using S3 clients.

In order that data written using S3 can be accessed as files, the bucket administrator
can set a Default Group on the bucket and can set default permissions for files and
directories own by that group. This default Unix group is assigned to objects when
they are created from S3, so that when accessed by HDFS they will not only have an
owner, but can also have group membership and permissions that enable access from
the Hadoop cluster.

Files created using HDFS and accessed using S3 protocol will not be affected by the
default permissions, they are only applied when they are created using the S3
protocol.

What is ECS HDFS?

142 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

Hadoop Kerberos authentication mode
When Kerberos and the ECS Active Directory server are integrated, the Kerberos
realm provides a single namespace of users so that the Hadoop users authenticated
with kinit are recognized as credentialed ECS users.

In a Hadoop cluster running in Kerberos mode, there must be a one-way cross-realm
trust from the Kerberos realm to the Active Directory realm used to authenticate your
ECS users.

The following identity translation properties in core-site.xml are used to ensure
the proper Hadoop-to-ECS user translation:

l fs.permissions.umask-mode: Set the value to 022.

l fs.viprfs.auth.anonymous_translation: Set the value to CURRENT_USER.

l fs.viprfs.auth.identity_translation: Set the value to CURRENT_USER_REALM so
the realm of users is auto-detected.

In addition, you must set the following properties in core-site.xml to define a
service principal:

l viprfs.security.principal

Proxy user
ECS HDFS supports the use of the Hadoop proxy user.

A proxy user allows a Hadoop superuser to submit jobs or access HDFS on behalf of
another user. The proxy user functionality can be compared to the Unix/Linux
'effective user' capabilities where running a command as one user assumes the
identity of a different user as identified by the permission settings on the executable.

You configure proxy users for secure impersonation on a per-namespace (or per-
bucket) basis. Proxy users are supported in simple and Kerberos mode. In either mode,
the administrator can restrict proxy impersonations using the 'hadoop.proxyuser.*.*'
properties.

Equivalence user
ECS converts three part principals to two part principals.

A Kerberos principal is generally in the form primary/instance@realm, although the
instance is not required, so primary@realm principal applies to all hosts in the realm.
If the instance is specified, it may be used to designate a specific host, such as joe/
host1.company.com@COMPANY.COM or joe/
host2.company.com@COMPANY.COM. These two principals are for the same
primary user (joe), but are targeted to only be granted authentication on the hosts
(host1 or host2).

This type of user principal is recommended to provide an enhanced level of security.
From an ECS perspective, each principal would have to be added to ECS. This
becomes quite cumbersome, so the equivalence user feature allows ECS authorization
to be performed by using a two-part principal (primary@realm), even if three-part
principals are being used.

What is ECS HDFS?

Hadoop Kerberos authentication mode 143

SymLink support
In standard HDFS, a symbolic link that does not specify the full URI to a file points to a
path in the same HDFS instance.

The same rule is true in ECS HDFS. When you do not specify the full URI in a symlink,
ECS HDFS uses the current namespace and bucket as the root. To provide a symlink
to a file outside of the current namespace and bucket, you must provide the full URI
that includes both the scheme and the authority.

Note

Hadoop 2.2 does not support SymLinks.

Migration from a simple to a Kerberos Hadoop cluster
ECS provides support for migrating from a simple Hadoop environment to a Hadoop
environment secured by Kerberos.

When ECS HDFS is integrated with a Hadoop environment that uses simple security,
files and directories created by Hadoop users and processes will be owned by non-
secure users. If you subsequently, migrate the Hadoop cluster to use Kerberos
security, the files and directories written to ECS HDFS will no longer be accessible to
those users.

ECS provides an inbuilt migration feature that enables you to provide ECS with a
mapping between shortnames and Kerberos principals, so that files owned by non-
secure shortnames will be accessible as the mapped Kerberos principal.

Where you only have a small number of files that have been written by shortname
users, you might want to chown them to be owned by the Kerberos principal.
However, where you have a large number of files, the migration feature means you do
not have to change their ownership.

This feature is not implemented for buckets and you will need to change the bucket
ACLs to allow access by the Kerberos principals if you are relying on access by users.
However, if you use group membership as the primary means for enabling access, you
will not have to change the bucket ACLs.

ECS allows the use of groups to simplify access to buckets, files and directories.
Groups always use Unix simple names, so the group name associated with a bucket,
file or directory will be the same when accessing them from a simple or Kerberized
cluster. When accessing from a simple evironment, group membership is determined
from the Unix box, when accessing from a Kerberized cluster you can configure group
membership by assigning the mapping.

When using Active Directory credentials, the mapping between AD principals and Unix
principals is achieved by removing the domain suffix, so user hdfs@domain.com
becomes hdfs. This in not quite as flexible as when using Kerberos principal mapping
which allow mappings such as hdfs-xx@realm.com to hdfs.

When using groups with Active Directory, an Authentication Provider must have been
configured in ECS so that membership of the group can be checked.

File system interaction
When you are interacting directly with ECS HDFS, you might notice the following
differences from interaction with the standard HDFS file system:

What is ECS HDFS?

144 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

l Applications that expect the file system to be an instance of DistributedFileSystem
do not work. Applications hardcoded to work against the built-in HDFS
implementation require changes to use ECS HDFS.

l ECS HDFS does not support checksums of the data.

l When you use the listCorruptFileBlocks function, all blocks are reported as OK
because ECS HDFS has no notion of corrupted blocks.

l The replication factor is always reported as a constant N, where N=1. The data is
protected by the ECS SLA, not by Hadoop replication.

Supported and unsupported Hadoop applications
ECS HDFS supports the majority of applications in the Hadoop ecosystem.

Supported applications
The following applications in the Hadoop ecosystem are supported:

l HDFS

l MapRedeuce

l Yarn

l Pig

l Hive

l HBase

Unsupported applications
The following applications in the Hadoop ecosystem are not supported:

l HttpFS

l Hue

l Cloudera Impala

What is ECS HDFS?

Supported and unsupported Hadoop applications 145

What is ECS HDFS?

146 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

CHAPTER 21

Create a bucket for the HDFS filesystem

l Create a bucket for HDFS using the ECS Portal... 148
l Example Hadoop and ECS bucket permissions... 152

Create a bucket for the HDFS filesystem 147

Create a bucket for HDFS using the ECS Portal
Use the ECS Portal to create a bucket configured for use with HDFS.

Before you begin

l You must be a Namespace Admin or a System Admin to create a bucket at the
ECS portal.

l If you are a Namespace Admin you can create buckets in your namespace.

l If you are System Admin you can create a bucket belonging to any namespace.

You will need to ensure that Hadoop users and services have access to the HDFS file
system (the bucket) and that files and directories that they create are accessible to
the appropriate users and groups.

You can do this in the following ways:

l Make the owner of the bucket the same as the Hadoop superuser, usually "hdfs"
or "hdfs@REALM.COM".

l Enable access to the bucket by group membership:

n Assign a Default Group to the bucket. This will automatically be assigned
Custom Group ACLs.

n After bucket creation add Custom Group ACLs for any other groups that need
access.

l Enable access for individuals by adding User ACLs to the bucket.

l Ensure that the Hadoop users that need superuser access to the HDFS are part of
the Hadoop supergroup.

If you want object data written to the bucket using object protocols to be accessible
from HDFS, you should ensure that a default group is assigned to the bucket and that
default file and directory permissions are set for the group.

You can read more about users and permissions in Accessing the bucket as a file
system on page 141 and typical bucket user permissions are shown in Example Hadoop
and ECS bucket permissions on page 152.

Procedure

1. At the ECS Portal, select Manage > Buckets > New Bucket.

2. Enter a name for the bucket.

Note

You should not use underscores in bucket names as they are not supported by
the URI Java class. For example, viprfs://my_bucket.ns.site/ will not
work as this is an invalid URI and is thus not understood by Hadoop.

3. Specify the namespace that the bucket will belong to.

4. Select a Replication Group or leave blank to use the default replication group
for the namespace.

5. Enter the name of the bucket owner.

For a HDFS bucket, the bucket owner will usually be "hdfs", or
"hdfs@REALM.COM" for Kerberos buckets. The Hadoop hdfs user will require
superuser privileges on the HDFS and this can be achieved by making hdfs the

Create a bucket for the HDFS filesystem

148 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

owner of the bucket. Other Hadoop users may also require superuser privileges
and these privileges can be granted by assigning users to a group and making
that group a superuser group.

6. Do not enable CAS.

Note

A bucket that is intended for use as HDFS cannot be used for CAS. The CAS
control is disabled when File System is enabled.

7. Enable any other bucket features that you require.

You can enable any of the following features on a HDFS bucket:

l Quota

l Server-side Encryption

l Metadata Search

l Access During Outage

l Compliance (see note)

l Bucket Retention

Refer to Administrators Guide: Create and manage buckets for information on
each of these settings and how to configure them.

Note

A bucket that is compliance-enabled cannot be written to using the HDFS
protocol. However, data written using object protocols can be read from HDFS.

8. Select Enabled for the File System.

Once enabled, controls for setting a Default Group for the filesystem/bucket
and for assigning group permissions for files and directories created in the
bucket are available.

9. At the File System panel, shown below, enter a name for the Default Bucket
Group.

Create a bucket for the HDFS filesystem

Create a bucket for HDFS using the ECS Portal 149

https://community.emc.com/docs/DOC-53956

This group will be the group associated with the HDFS root filesystem and
enables Hadoop users who are members of the group to access the HDFS.

It could be a group, such as "hdfs" or "hadoop" to which the services that you
need to access the data on the HDFS belong, but it can be whatever group
name makes sense for your Hadoop configuration. For example, the
administrator might want all S3 files uploaded to the bucket to be assigned to
group 'S3DataUsers'. All S3 files will then have this group assigned to them. On
the Hadoop node, the Hadoop administrator will have users that are members of
the group 'S3DataUsers'. S3DataUsers can be a Linux group, or an Active
Directory group. When the Hadoop users want to access the S3 data, they will
be able to do so because the files were uploaded and assigned to that group

This group must be specified at bucket creation. If it is not, the group would
have to be assigned later from Hadoop by the filesystem owner.

10. Set the default permissions for files and directories created in the bucket using
the object protocol.

These setting are used to apply Unix group permissions to objects created using
object protocols. These permissions will apply to the HDFS group (the Default
Bucket Group) when the object or directory is listed from Hadoop. You can
refer to Multi-protocol (cross-head) access on page 142 for more information
on setting the Default Group and permissions for the file system.

a. Set the Group File Permissions by clicking the appropriate permission
buttons.

You will normally set Read and Execute permissions.

b. Set the Group Directory Permissions by clicking the appropriate permission
buttons.

You will normally set Read and Execute permissions.

11. Click Save to create the bucket.

Set custom group bucket ACLs
The ECS Portal enables the group ACL for a bucket to be set. Bucket ACLs can be
granted for a group of users (Custom Group ACL) or for individual users, or a
combination of both. For example, you can grant full bucket access to a group of
users, but you can also restrict (or even deny) bucket access to individual users in that
group.

Before you begin

l You must be a Namespace Admin or a System Admin to edit the group ACL for a
bucket.

l If you are a Namespace Admin you can edit the group ACL settings for buckets
belonging to your namespace.

l If you are System Admin you can edit the group ACL settings for a bucket
belonging to any namespace.

When the bucket is accessed using HDFS, using ECS multi-protocol access, members
of the Unix group will be able to access the bucket.

Procedure

1. At the ECS Portal, select Manage > Buckets.

Create a bucket for the HDFS filesystem

150 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

2. In the Buckets table, select the Edit ACL action for the bucket for which you
want to change the settings.

3. To set the ACL for a custom group, select Custom Group User ACLs.

4. At the Custom Group User ACLs page, select Add.

5. Enter the name for the group.

This name can be a Unix/Linux group, or an Active Directory group.

6. Set the permissions for the group.

At a minimum you will want to assign Read, Write, Execute and Read ACL.

7. Select Save.

Set the bucket ACL permissions for a user
The ECS Portal enables the ACL for a bucket to be set for a user. The bucket owner is
assigned permissions automatically. Other Hadoop users can be assigned User ACLs
to enable access to the bucket/filesystem, alternatively they can gain access to the
bucket by being a member of group that has been assigned Custom Group ACLs.

Before you begin

l You must be an ECS Namespace Admin or a System Admin to edit the ACL for a
bucket.

l If you are a Namespace Admin you can edit the ACL settings for buckets belonging
to your namespace.

Create a bucket for the HDFS filesystem

Set the bucket ACL permissions for a user 151

l If you are System Admin you can edit the ACL settings for a bucket belonging to
any namespace.

Procedure

1. At the ECS Portal, select Manage > Buckets.

2. In the Buckets table, select the Edit ACL action for the bucket for which you
want to change the settings.

3. To set the ACL permissions for a user, select the User ACLs button.

4. You can edit the permissions for a user that already has permissions assigned,
or you can add a user that you want to assign permissions for.

l To set (or remove) the ACL permissions for a user that already has
permissions, select Edit (or Remove) from the Action column in the ACL
table.

l To add a user to which you want to assign permissions, select Add.

The user that you have set as the bucket owner will have already have default
permissions assigned.

The bucket shown below is owned by the "hdfs" users and, as the owner, has
been given full control. Full control translates to read-write-execute permissions
in a Hadoop/Unix environment. User "sally" has been give read-execute
permissions to enable that user to access the bucket.

More information on ACL privileges is provided in Administrators Guide: Create
and manage buckets .

5. If you have added an ACL, enter the username of the user that the permissions
will apply to.

6. Specify the permissions that you want to apply to the user.

7. Select Save.

Example Hadoop and ECS bucket permissions
Examples of the relationship between Hadoop users and groups and the users and
groups assigned permission to access the bucket through ECS User ACLs and Custom
Group ACLs are provided here.

Create a bucket for the HDFS filesystem

152 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

https://community.emc.com/docs/DOC-53956
https://community.emc.com/docs/DOC-53956

On bucket creation, the bucket owner and the Default Group determine the owner and
the group assignment for the bucket when accessed using HDFS, and ACLs are
automatically assigned to them. A bucket must always have an owner, however, a
Default Group does not have to be assigned. Other users and groups (called Custom
Groups), apart from the bucket owner and the Default Group, can be assigned ACLs
on the bucket and ACLs assigned in this way translate to permissions for Hadoop
users.

Table 16 Example bucket permissions for filesystem access in simple mode

Hadoop Users and Groups Bucket
Permissions

Bucket/Filesystem Access

Bucket access using Group ACL

Users (service)

hdfs. mapred, yarn, hive, pig

Users (applications)

sally, fred

Groups

hdfs (hdfs)

hadoop (hdfs, mapred,
yarn, hive, pig)

users (sally, fred)

Supergroup

hdfs

Bucket owner

hdfs

Default Group

Custom Group
ACL

hadoop, users

User ACL

hdfs (owner)

Custom Group ACLs set on the
bucket to enable the hadoop and
users group to have permissions
on the bucket/root filesystem

This example assumes that hdfs is
the superuser - the user that
started the namenode.

Bucket created by s3 user - crosshead access

Users (service)

hdfs. mapred, yarn, hive, pig

Users (applications)

sally, fred

Groups

hdfs (hdfs)

hadoop (hdfs, mapred,
yarn, hive, pig)

users (sally, fred)

Supergroup

hdfs

Bucket owner

s3user

Default Group

hadoop

Custom Group
ACL

hadoop (default)

User ACL

s3user (owner),
sally, fred

Where you want objects written
by an s3 user to be accessible as
files from HDFS, a Default Group
should be defined (hadoop) so
that Hadoop users and services
are granted permissions on the
files due to group membership.

Default Group automatically has
Custom Group ACLs on the
bucket/filesystem. As is Default
Group set, the root filesystem will
have 777:

drwxrwxrwx+ - s3user
hadoop 0 2015-12-09
12:28 /

Users can be given access either
by adding User ACLs or by adding
Custom Group ACLs for the group
to which the users belong.

Create a bucket for the HDFS filesystem

Example Hadoop and ECS bucket permissions 153

Table 17 Example bucket permissions for filesystem access in Kerberos mode

Hadoop user Bucket
Permissions

Bucket/Filesystem Access

Users (service)

hdfs@REALM.COM.
mapred@REALM.COM,
yarn@REALM.COM,
hive@REALM.COM,
pig@REALM.COM

Users (applications)

sally@REALM.COM,
fred@REALM.COM, ambari-
qa@REALM.COM

Groups

hdfs
(hdfs@REALM.COM)

hadoop
(hdfs@REALM.COM,
mapred@REALM.COM,
yarn@REALM.COM,
hive@REALM.COM,
pig@REALM.COM)

users
(sally@REALM.COM,
fred@REALM.COM)

Supergroup

hdfs

Bucket owner

hdfs@REALM.C
OM

Default Group

hadoop

Custom Group
ACL

hadoop
(default), users

User ACL

hdfs@REAL.CO
M (owner)

Custom Group ACLs set on the
bucket to enable the hadoop and
users group to have permissions
on the bucket/root filesystem

User information from the Hadoop
cluster must be available to ECS
so that it can provide secure
access to the bucket. Information
about this metadata is provided
in: Example Hadoop and ECS
bucket permissions on page 152
and an example metadata file is
provided here.

Create a bucket for the HDFS filesystem

154 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

CHAPTER 22

Use Hortonworks Ambari to set up Hadoop with
ECS HDFS

l Deploying a Hortonworks cluster with Ambari.. 156
l Download Ambari..156
l Download the ECS HDFS Client Library..156
l Set up a local repository from which to deploy the ECS Client Library............. 157
l Install the Ambari server... 157
l Enable the Ambari Hadoop ECS stack.. 158
l Install the Ambari Agent Manually...158
l Install Hadoop ..159

Use Hortonworks Ambari to set up Hadoop with ECS HDFS 155

Deploying a Hortonworks cluster with Ambari
Ambari makes it easy to deploy a Hortonworks Hadoop cluster and uses the concept
of a stack to bring together the services that are required for a specific release of
Hadoop. Hortonworks 2.3 (Hadoop 2.7) provides a custom Hadoop stack for ECS that
simplifies the integration of Hadoop with ECS. For other Hortonworks releases you
can use Ambari in its normal mode.

The Hortonworks Hadoop ECS (HDP ECS) stack makes it easy to integrate ECS
HDFS with Hadoop by deploying the ECS Client Library to all Hadoop nodes and
simplifying the configuration of the cluster to use the ECS HDFS.

To deploy and configure the Hortonworks HDP ECS stack, perform the following
steps:

1. Download Ambari

2. Download the ECS HDFS Client Library

3. Set up a local repository from which to deploy the ECS Client Library

4. Install the Ambari server

5. Enable the Ambari ECS stack

6. Install the Ambari Agent manually

7. Install the Hadoop cluster

Download Ambari
Download Ambari 2.2.

Ambari can be used to install and manage a Hadoop (HDP) distribution. Ambari 2.2
provides the ability to install the Hortonworks Hadoop ECS stack

You can download the Ambari repository from the following link:

http://hortonworks.com/hdp/downloads/

You should download the Ambari repository to all nodes in your cluster to enable the
Ambari Server to be installed on the server node and Ambari Agent to be installed on
all nodes.

Download the ECS HDFS Client Library
Download the ECS HDFS Client Library RPM from the ECS Support Zone.

http://support.emc.com

Use Hortonworks Ambari to set up Hadoop with ECS HDFS

156 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

Set up a local repository from which to deploy the ECS
Client Library

Set up a local repository from which Ambari can deploy the ECS Client Library with
the Hadoop stack.

Before you begin

Setting up a repository will normally involve using a package manager to create a set
of metadata about the packages contained in a repository directory, and providing a
mechanism for accessing the repository directory, such as over HTTP, or over a
network.

There are a number of tools that can be used to create a repository. Information on
using yum to create a package repository is provided here.

Procedure

1. Create the local repository.

2. Add the ECS Client Library RPM to the local repository.

Install the Ambari server
Install the Ambari server.

The basic commands for installing and setting up the Ambari sever as provided in this
procedure. More complete information can be found in the Hortonworks
documentation, here.

Procedure

1. Install the Ambari server using the following command.

yum install ambari-server -y

2. Set up the Ambari sever, as follows.

ambari-server setup -s

3. Start the Ambari server, as follows

ambari-server start

Use Hortonworks Ambari to set up Hadoop with ECS HDFS

Set up a local repository from which to deploy the ECS Client Library 157

http://yum.baseurl.org/wiki/RepoCreate
http://docs.hortonworks.com/HDPDocuments/Ambari-2.1.2.1/bk_Installing_HDP_AMB/content/ch_Installing_Ambari.html

Enable the Ambari Hadoop ECS stack
The Hortonworks Hadoop (HDP) ECS stack is disabled by default and must be enabled
before it can be selected for deployment. The stack can be enabled from the
command line.

Procedure

1. From the Ambari server machine, open a command prompt.

2. Run the following command:

ambari-server enable-stack --stack HDP --version 2.3.ECS

If you want to enable more than one stack, you can include the --version
option for each additional stack. For example:

ambari-server enable-stack --stack HDP --version 2.3.ECS --
version <stack_name>

Install the Ambari Agent Manually
The steps for installing the Ambari Agent manually on each node are provided in this
procedure.

Before you begin

l The Ambari repository must be present on each cluster node in order to install the
agent on the node.

Procedure

1. On one of the Ambari slave hosts, open a command prompt.

2. Install the Ambari Agent using the following command.

yum install ambari-agent -y

3. Get the hostname of the Ambari server node.

You can do this using the hostname command.

4. Edit the ambari-agent.ini file to specify the hostname of the Ambari
server.

For example, using vi, you would type:

vi /etc/ambari-agent/conf/ambari-agent.ini

The server hostname is in the [server] parameters, shown below, and you
should replace "localhost" with the hostname of the Ambari server.

[server]
hostname=localhost

Use Hortonworks Ambari to set up Hadoop with ECS HDFS

158 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

url_port=8440
secure_url_port=8441

5. Start the Ambari Agent.

ambari-agent start

6. Repeat these steps for each Ambari slave node. If you want to use the Ambari
server node as a data node in the Hadoop cluster, you should also install the
agent on that machine.

Install Hadoop
Install the Hadoop cluster.

Procedure

1. Follow the Ambari Wizard for installing a Hadoop Cluster.

The steps that follow indentify the main ECS integration features.

Refer to the Hortonworks documentation where you need clarification of the
requirements for a step.

2. When prompted for the stack to deploy, select the HDP ECS stack.

For example, HDP 2.3.ECS as shown below.

3. Specify the repository in which the ECS Client Library RPM is located.

For your operating system, replace http://ECS_CLIENT_REPO/ with the
location of the repository in which the ECS Client Library RPM is located.

Use Hortonworks Ambari to set up Hadoop with ECS HDFS

Install Hadoop 159

4. Enter the list of hosts for the Haddop cluster and, under Host Registration
Information, select Perform Manual Registration.

Note

If you create an SSH key and deploy it to all nodes, you can use this mechanism
to deploy the Ambari agent to all nodes. As we have deployed it manually, this is
not necessary.

5. You will need to provide properties to customize the operations of the Hadoop
Hive and Hbase services.

Use Hortonworks Ambari to set up Hadoop with ECS HDFS

160 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

a. For Hive, you will need to provide a metastore database.

You can tell Ambari to create a new database (New MySQL Database). In
which case, you will simply need to supply a password for the new database.
Alternatively, you can tell Ambari to use an exiting database.

b. For Hbase, the hbase.rootdir must be pointed at an ECS bucket (HDFS
filesystem).

For example:

viprfs://mybucket.mynamespace.Site1/apps/hbase/data

6. You will need to provide properties to customize the operations of the Hadoop
HDFS/ECS service.

As part of the Hortonworks Hadoop ECS stack customization, ECS-specific
core-site properties have already been added. Some of these properties are
fixed, and never need to be modified. Some are set to default values that are
appropriate for a Hadoop simple mode environment and will only need to be
changed when setting up the environment to use Kerberos security.

Some parameters are specific to your cluster and need to be provided.

Enter the ECS/HDFS core-site configuration properties for the missing
properties.

a. Enter a value for the default filesystem property: fs.defaultFS

This is

viprfs://<bucket>.<namespace>.<installation>

For example:

viprfs://mybucket.mynamespace.Site1

Use Hortonworks Ambari to set up Hadoop with ECS HDFS

Install Hadoop 161

b. Enter the ECS node addresses in the fs.vipr.installation.<site>.hosts (by
default: fs.vipr.installation.Site1.hosts) property.

This can be a comma separated list of IP addresses, for example:

203.0.113.10,203.0.113.11,203.0.113.12

You can read more about the properties in Edit Hadoop core-site.xml file on
page 167, which describes the property settings for a simple Hadoop cluster.

Results

Once installed, the Ambari interface for the Hadoop ECS cluster is customized so that
the HDFS service displays as ECS. In addition, ECS-specific core-site.xml
properties that would normally need to be added are already present and default
values have been set for the most of the parameters.
The custom interface is shown below:

Use Hortonworks Ambari to set up Hadoop with ECS HDFS

162 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

CHAPTER 23

Configure ECS HDFS integration with a simple
Hadoop cluster

l Configure ECS HDFS Integration with a simple Hadoop cluster........................164
l Plan the ECS HDFS and Hadoop integration...164
l Obtain the ECS HDFS installation and support package................................... 165
l Deploy the ECS HDFS Client Library.. 165
l Edit Hadoop core-site.xml file...167
l Edit HBASE hbase-site.xml...170
l Restart and verify access.. 171

Configure ECS HDFS integration with a simple Hadoop cluster 163

Configure ECS HDFS Integration with a simple Hadoop
cluster

This procedure describes how to set up your existing Hadoop distribution to use the
ECS storage infrastructure with ECS HDFS.

If you are using the Hortonworks Ambari distribution, you can use the procedure
described in Deploying a Hortonworks cluster with Ambari on page 156 to install and
configure Hadoop.

To perform this integration procedure, you must have:

l A working knowledge of your Hadoop distribution and its associated tools.

l The Hadoop credentials that allow you to log in to Hadoop nodes, to modify
Hadoop system files, and to start and stop Hadoop services.

The following steps need to be performed:

1. Plan the ECS HDFS and Hadoop integration on page 164

2. Obtain the ECS HDFS installation and support package on page 165

3. Deploy the ECS HDFS Client Library on page 165 (Not required if you have used
Ambari Hortoworks for ECS)

4. Edit Hadoop core-site.xml file on page 167

5. Edit HBASE hbase-site.xml on page 170

6. Restart and verify access on page 171

Plan the ECS HDFS and Hadoop integration
Use this list to verify that you have the information necessary to ensure a successful
integration.

Table 18 ECS HDFS configuration prerequisites

Element What to do

Hadoop cluster Verify the cluster is installed and operational.

Record the admin credentials for use later in this procedure.

ECS cluster:ECS
nodes

Record the ECS node IP addresses for use later in this procedure.

ECS cluster: bucket HDFS requires a bucket enabled for HDFS to be created within an
ECS replication group and the bucket is accessed as a filesystem
using the namespace and bucket name.

Record the name of the bucket.

ECS cluster: tenant
namespace

Verify a tenant namespace is configured. Record the name.

Configure ECS HDFS integration with a simple Hadoop cluster

164 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

Obtain the ECS HDFS installation and support package
The ECS HDFS Client Library, and HDFS support tools are provided in a HDFS Client
ZIP file, hdfsclient-<ECS version>-<version>.zip, that you can download
from the ECS support pages on support.emc.com.

The ZIP file contains /playbooks and /client directories. Before you unzip the
file, create a directory to hold the zip contents (your unzip tool might do this for you),
then extract the contents to that directory. After you extract the files, the directories
will contain the following:

l /playbooks: Contains Ansible playbooks for configuring a secure Hadoop
environment to talk to ECS HDFS.

l /client: Contains the following files:

n ECS Client Library (ViPPRFS) JAR files (viprfs-client-<ECS version>-
hadoop-<Hadoop version>.jar): Used to configure different Hadoop
distributions.

Deploy the ECS HDFS Client Library
Use this procedure to put the ECS HDFS Client Library JAR on the classpath of each
client node in the Hadoop cluster.

Before you begin

Obtain the ECS HDFS Client Library for your Hadoop distribution from the EMC
Support site for ECS as described in Obtain the ECS HDFS installation and support
package on page 165.

The HDFS Client Library uses the following naming conventionviprfs-client-
<ECS version>-hadoop-<Hadoop version>.jar and the JARs for use with
each release are listed in the table below.

Table 19 ECS HDFS Client Library

Hadoop
distributio
n

Version ECS HDFS JAR

Hortonwork
s

HWX 2.0 viprfs-client-<ECS version>-hadoop-2.2.jar

HWX 2.1 viprfs-client-<ECS version>-hadoop-2.3.jar (Hadoop 2.5 - No
2.4 client)

HWX 2.2 viprfs-client-<ECS version>-hadoop-2.6.jar

HWX 2.3 viprfs-client-<ECS version>-hadoop-2.7.jar

Configure ECS HDFS integration with a simple Hadoop cluster

Obtain the ECS HDFS installation and support package 165

Note

l When you upgrade to a later version of ECS, you must deploy the ECS HDFS
Client Library for the release to which you have upgraded.

l For Hortonworks 2.3 (Hadoop 2.7), you can use Ambari to install a HDP release
that is pre-configured with the ECS Client Library.

Procedure

1. Log in to a ECS client node.

2. Run the classpath command to get the list of directories in the classpath:

hadoop classpath
3. Copy ECS HDFS Client Library JAR to one of folders listed by the classpath

command that occurs after the /conf folder.

For example, the classpath command output normally looks like this:

/usr/hdp/2.2.0.0-1256/hadoop/conf:/usr/hdp/2.2.0.0-1256/
hadoop/lib/*:/usr/hdp/2.2.0.0-1256/hadoop/.//*:/usr/hdp/
2.2.0.0-1256/hadoop-hdfs/./:/usr/hdp/2.2.0.0-1256/hadoop-
hdfs/lib/*:/

With the /conf folder listed first. And it is suggested that you add the Client
Library JAR to the first /lib folder, which is usually as listed in the table below.

ECS distribution Classpath location (suggested)

Hortonworks /usr/hdp/<version>/hadoop/lib

4. Repeat this procedure on each ECS client node.

5. Update the classpath configuration setting for MapReduce, yarn and also
explicitly specify path to the JAR for Tez.

An example of these configuration settings is provided below:

mapreduce.application.classpath
$PWD/mr-framework/hadoop/share/hadoop/mapreduce/*:$PWD/mr-
framework/hadoop/share/hadoop/mapreduce/lib/*:$PWD/mr-
framework/hadoop/share/hadoop/common/*:$PWD/mr-framework/
hadoop/share/hadoop/common/lib/*:$PWD/mr-framework/hadoop/
share/hadoop/yarn/*:$PWD/mr-framework/hadoop/share/hadoop/
yarn/lib/*:$PWD/mr-framework/hadoop/share/hadoop/hdfs/*:
$PWD/mr-framework/hadoop/share/hadoop/hdfs/lib/*:$PWD/mr-
framework/hadoop/share/hadoop/tools/lib/*:/usr/hdp/$
{hdp.version}/hadoop/lib/hadoop-lzo-0.6.0.$
{hdp.version}.jar:/etc/hadoop/conf/secure:/usr/hdp/
2.3.2.0-2950/hadoop/lib/*

yarn.application.classpath
$HADOOP_CONF_DIR,/usr/hdp/current/hadoop-client/*,/usr/hdp/
current/hadoop-client/lib/*,/usr/hdp/current/hadoop-hdfs-
client/*,/usr/hdp/current/hadoop-hdfs-client/lib/*,/usr/hdp/
current/hadoop-yarn-client/*,/usr/hdp/current/hadoop-yarn-
client/lib/*,/usr/hdp/2.3.2.0-2950/hadoop/lib/*

tez.cluster.additional.classpath.prefix

Configure ECS HDFS integration with a simple Hadoop cluster

166 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

/usr/hdp/${hdp.version}/hadoop/lib/hadoop-lzo-0.6.0.$
{hdp.version}.jar:/etc/hadoop/conf/secure:/usr/hdp/
2.3.2.0-2950/hadoop/lib/viprfs-client-2.2.0.0-hadoop-2.7.jar

Edit Hadoop core-site.xml file
Use this procedure to update core-site.xml with the properties needed to
integrate ECS HDFS with a Hadoop cluster that uses simple authentication mode.

Before you begin

l It is always preferable to add/manage these properties using a Hadoop
management UI to reduce the chance of errors and to ensure these changes are
persistent across the cluster. Manually editing files on multiple Hadoop nodes is
cumbersome and error prone. You must have a set of user credentials that enable
you to log in to the management UI for your distribution.

l If you do modify core-site.xml directly, you must have a set of user
credentials that enable you to log in to Hadoop nodes and modify core-
site.xml.

Some properties are specific to ECS and usually need to be added to core-
site.xml. If you are using the Hortonworks Ambari Hadoop ECS stack, the ECS-
specific parameters are already present.

If you intend to edit core-site.xml directly, the location of core-site.xml
depends on the distribution you are using, as shown in the following table.

Table 20 core-site.xml locations

Hadoop
Distribution

core-site.xml location Nodes to
update

Hortonworks /etc/hadoop/conf All nodes

core-site.xml resides on each node in the Hadoop cluster. You must modify the
same properties in each instance. You can make the change in one node, and then use
secure copy command (scp) to copy the file to the other nodes in the cluster.

See core_site.xml property reference for more information about each property you
need to set.

Procedure

1. If you are using a management interface, such as Ambari. Log in as an
administrator and go to the HDFS configuration page.

2. If you intend to make the changes by manually editing core-site.xml, follow
these steps

a. Log in to one of the HDFS nodes where core-site.xml is located.

b. Make a backup copy of core-site.xml.

cp core-site.xml core-site.backup
c. Using the text editor of your choice, open core-site.xml for editing.

Configure ECS HDFS integration with a simple Hadoop cluster

Edit Hadoop core-site.xml file 167

3. Add the following properties and values to define the Java classes that
implement the ECS HDFS file system:

<property>
<name>fs.viprfs.impl</name>
<value>com.emc.hadoop.fs.vipr.ViPRFileSystem</value>
</property>

<property>
<name>fs.AbstractFileSystem.viprfs.impl</name>
<value>com.emc.hadoop.fs.vipr.ViPRAbstractFileSystem</value>
</property>

4. Add the fs.vipr.installations property. In the following example, the value is set
to Site1.

<property>
 <name>fs.vipr.installations</name>
 <value>Site1</value>
</property>

5. Add the fs.vipr.installation.[installation_name].hosts property as a comma-
separated list of ECS data nodes or load balancer IP addresses. In the following
example, the installation_name is set to Site1.

<property>
 <name>fs.vipr.installation.Site1.hosts</name>
 <value>203.0.113.10,203.0.113.11,203.0.113.12</value>
</property>

6. Add the fs.vipr.installation.[installation_name].resolution property, and set it to
one of the following values:

Option Description

dynamic Use when accessing ECS data nodes directly without a load
balancer.

fixed Use when accessing ECS data nodes through a load balancer.

In the following example, installation_name is set to Site1.

<property>
 <name>fs.vipr.installation.Site1.resolution</name>
 <value>dynamic</value>
</property>

a. If you set fs.vipr.installation.[installation_name].resolution to dynamic, add
the fs.vipr.installation.
[installation_name].resolution.dynamic.time_to_live_ms property to specify
how often to query ECS for the list of active nodes.

In the following example, installation_name is set to Site1.

<property>
<name>fs.vipr.installation.Site1.resolution.dynamic.time_to_
live_ms</name>

Configure ECS HDFS integration with a simple Hadoop cluster

168 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

<value>900000</value>
</property>

7. Locate the fs.defaultFS property and modify the value to specify the ECS file
system URI. .

This setting is optional and you can specify the full file system URL to connect
to the ECS ViPRFS.

Use the following format: viprfs://
<bucket_name.namespace.installation_name, where

l bucket_name: The name of the bucket that contains the data you want to
use when you run Hadoop jobs. If running in simple authentication mode, the
owner of the bucket must grant permission to Everybody. In the following
example, the bucket_name is set to mybucket.

l namespace: The tenant namespace where bucket_name resides. In the
following example, the namespace is set to mynamespace.

l installation_name: The value specified by the fs.vipr.installations property. In
the following example, installation_name is set to Site1.

<property>
 <name>fs.defaultFS</name>
 <value>viprfs://mybucket.mynamespace.Site1/</value>
</property>

8. Locate fs.permissions.umask-mode, and set the value to 022.

In some configurations, this property might not already exist. If it does not, then
add it.

<property>
 <name>fs.permissions.umask-mode</name>
 <value>022</value>
</property>

9. Add the fs.viprfs.auth.anonymous_translation property; used to specify the
owner and group of a file or directory created using HDFS.

Note

Prior to ECS 2.2, this parameter was used to assign an owner to files and
directories that were created without an owner (anonymously owned files) so
that the current user had permission to modify them. Files and directories are
no longer created anonymously and have an owner assigned according to the
setting of this parameter.

Option Description

LOCAL_USER Use this setting with a Hadoop cluster that uses simple
security. Assigns the Unix user and group of the Hadoop
cluster to newly created files and directories.

CURRENT_USER Use this setting for a Kerberized Hadoop cluster. Assigns
the Kerberos principal (user@REALM.COM) as the file or
directory owner, and uses the group that has been
assigned as the default for the bucket.

Configure ECS HDFS integration with a simple Hadoop cluster

Edit Hadoop core-site.xml file 169

Option Description

NONE (default) (Deprecated) Previously indicated that no mapping from
the anonymously owned objects to the current user should
be performed.

<property>
 <name>fs.viprfs.auth.anonymous_translation</name>
 <value>LOCAL_USER</value>
</property>

10. Add the fs.viprfs.auth.identity_translation property. It provides a way to assign
users to a realm when Kerberos is not present.

Option Description

CURRENT_USER_REALM Use this setting for a Kerberized Hadoop cluster.
When specified, the realm is automatically
detected.

NONE (default) Use this setting with a Hadoop cluster that uses
simple security. With this setting ECS HDFS does
not perform realm translation.

FIXED_REALM (Deprecated) Provides the ability to hard-code
the user's realm using the fs.viprfs.auth.realm
property.

<property>
 <name>fs.viprfs.auth.identity_translation</name>
 <value>NONE</value>
</property>

11. Save core-site.xml.

12. Update the core-site.xml on the required nodes in your Hadoop cluster.

13. Use Hortonworks Ambari to update the core-site.xml with the same set of
properties and values.

Edit HBASE hbase-site.xml
When you use HBASE with ECS HDFS, you must set the hbase.rootdir in hbase-
site.xml to the same value as the core-site.xml fs.defaultFS property.

hbase-site.xml is located in one of the following locations:

Table 21 hbase-site.xml locations

Hadoop
Distribution

hbase-site.xml location

Hortonworks /etc/hbase/conf/

Procedure

1. Open hbase-site.xml.

Configure ECS HDFS integration with a simple Hadoop cluster

170 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

2. Set the hbase.rootdir property to the same value as fs.defaultFS adding /
hbase as the suffix.

3. Save your changes.

4. Restart the services for your distribution.

Hadoop Distribution Description

Hortonworks
bin/start-hbase.sh

Example 1 hbase.rootdir entry

<property>
 <name>hbase.rootdir</name>
 <value>viprfs://testbucket.s3.testsite/hbase</value>
</property>

Restart and verify access
Once you have performed the configuration steps, you can restart the Hadoop
services and check that you have access to the HDFS.

When the system is configured to use ECS HDFS, the HDFS NameNode can fail to
start. When ECS HDFS is configured as the HDFS, ECS HDFS performs all NameNode
functions and does not require the NameNode to be up.

Procedure

1. Restart the Hadoop services.

This will normally include HDFS, MapReduce, Yarn, and HBase.

If you are restarting the services manually, you can refer to the table below.

Hadoop Distribution Commands

Hortonworks # stop-all.sh
start-all.sh

2. Test the configuration by running the following command to get a directory
listing:

hdfs dfs -ls viprfs://mybucket.mynamespace.Site1/

13/12/13 22:20:37 INFO vipr.ViPRFileSystem: Initialized
ViPRFS for viprfs://mybucket.mynamespace.Site1/

If you have set fs.defaultFS, you can use:
hdfs dfs -ls /

Configure ECS HDFS integration with a simple Hadoop cluster

Restart and verify access 171

Configure ECS HDFS integration with a simple Hadoop cluster

172 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

CHAPTER 24

Configure ECS HDFS integration with a secure
(Kerberized) Hadoop cluster

l Integrate secure Hadoop cluster with ECS HDFS .. 174
l Plan migration from a simple to a Kerberos cluster... 174
l Map group names... 175
l Configure ECS nodes with the ECS Service Principal....................................... 175
l Secure the ECS bucket using metadata..179
l Edit core-site.xml... 183
l Restart and verify access... 186

Configure ECS HDFS integration with a secure (Kerberized) Hadoop cluster 173

Integrate secure Hadoop cluster with ECS HDFS
This procedure describes how to integrate your existing Hadoop distribution, that is
secured using Kerberos, with ECS HDFS.

If you have configured ECS HDFS to work with a Hadoop cluster configured for simple
authentication, and have migrated the Hadoop cluster to use Kerberos authentication,
you can also use this procedure.

Before performing the integration steps:

l Verify that a Kerberos KDC is installed and configured to handle authentication of
the Hadoop service principals. If you are using Active Directory to authenticate
ECS users, you must set up a cross-realm trust between the Kerberos realm and
the ECS user realm. Help with setting up the Kerberos KDC and configuring trust
is provided in Guidance on Kerberos configuration on page 190.

l Ensure that you have created a bucket for the HDFS filesystem (see Create a
bucket for HDFS using the ECS Portal on page 148)

l Ensure that you have read the guidelines for planning the integration (see Plan the
ECS HDFS and Hadoop integration on page 164).

l Ensure that you have downloaded the installation and support package (see Obtain
the ECS HDFS installation and support package on page 165).

To integrate ECS HDFS with your secure Hadoop cluster, complete the following
tasks:

1. Plan migration from a simple to a Kerberos cluster on page 174

2. Map group names on page 175

3. Configure ECS nodes with the ECS Service Principal on page 175

4. Secure the ECS bucket using metadata on page 179

5. Restart and verify access on page 186

Plan migration from a simple to a Kerberos cluster
ECS supports migration from a Hadoop cluster that uses simple security to a Hadoop
cluster secured by Kerberos.

If you are migrating from a simple to a secure environment, you should read the
section on migration: Migration from a simple to a Kerberos Hadoop cluster on page
144.

In general, the ECS migration feature will enable files and directories to be accessible
by Kerberos users seamlessly. However the following notes apply:

l If you migrate your Hadoop cluster to Kerberos and then restart the cluster,
processes such as MapReduce will not be able to access directories that it
previously created. You should wait until you have configured ECS HDFS using this
procedure before restarting Hadoop.

l For users and processes to be able to access the bucket, they need to be members
of the group that has access to the bucket, or you will need to change the bucket
ACLs so that Kerberos users have access.

Configure ECS HDFS integration with a secure (Kerberized) Hadoop cluster

174 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

Map group names

ECS needs to be able to map group details for Hadoop service principals like hdfs,
hive, etc. If you are using Active Directory, group information can be found from two
different sources: the bucket metadata or Active Directory. ECS determines which
source to use from a configuration parameter setting in /opt/storageos/conf/
hdfssvc.conf configuration file in the [hdfs.fs.request] section.

If you want ECS to use bucket metadata for group information (if available) in
preference to Active Directory, define the parameter as follows:

[hdfs.fs.request]
prefer_secure_metadata_bucket_for_groups = true

If you want ECS to determine group information from Active Directory in preference
to bucket metadata, define the parameter as follows:

[hdfs.fs.request]
prefer_secure_metadata_bucket_for_groups = false

The default value is true, so if this value is not defined, ECS will determine group
details for a Kerberos principal from the bucket metadata. If you make a change, you
must restart dataheadsvc.

Configure ECS nodes with the ECS Service Principal
The ECS service principal and its corresponding keytab file must reside on each ECS
data node. Use the Ansible playbooks provided to automate these steps.

Before you begin

You must have the following items before you can complete this procedure:

l Access to the Ansible playbooks. Obtain the Ansible playbooks from the ECS
HDFS software package as described in Obtain the ECS HDFS installation and
support package on page 165.

l The list of ECS node IP addresses.

l IP address of the KDC.

l The DNS resolution where you run this script should be the same as the DNS
resolution for the Hadoop host, otherwise the vipr/_HOST@REALM will not work.

ECS provides reusable Ansible content called 'roles', which consist of Python scripts,
YAML-based task lists, and template files.

l vipr_kerberos_config: Configures an ECS node for Kerberos.

l vipr_jce_config: Configures an ECS data node for unlimited-strength encryption
by installing JCE policy files.

l vipr_kerberos_principal: Acquires a service principal for an ECS node.

In this procedure, Ansible will be run using the utility Docker container that is installed
with ECS.

Configure ECS HDFS integration with a secure (Kerberized) Hadoop cluster

Map group names 175

Procedure

1. Log in to ECS Node 1 and copy the hdfsclient-<ECS version>-
<version>.zip to that node.

For example:

/home/admin/ansible

You can use wget to obtain the package directly from support.emc.com or you
can use scp if you have downloaded it to another machine.

2. Unzip the hdfsclient-<ECS version>-<version>.zip file.

The steps in this procedure use the playbooks contained in the viprfs-
client-<ECS version>-<version>/playbooks/samples directory and
the steps are also contained in viprfs-client-<ECS version>-
<version>/playbooks/samples/README.md.

3. Edit inventory.txt in the playbooks/samples directory to refer to the
ECS data nodes and KDC server.

The default entries are shown below.

[data_nodes]
192.168.2.[100:200]

[kdc]
192.168.2.10

4. Download the "unlimited" JCE policy archive from oracle.com, and extract it to
an UnlimitedJCEPolicy directory in viprfs-client-<ECS version>-
<version>/playbooks/samples

Note

This step should be performed only if you are using strong encryption type.

Kerberos may be configured to use a strong encryption type, such as AES-256.
In that situation, the JRE within the ECS nodes must be reconfigured to use the
'unlimited' policy.

5. Start the utility container on ECS Node 1 and make the Ansible playbooks
available to the container.

a. Load the utility container image.

For example:

sudo docker load -i /opt/emc/caspian/checker/docker/images/
utilities.txz

b. Get the identity of the docker image.

For example:

admin@provo-lilac:~> sudo docker images

Configure ECS HDFS integration with a secure (Kerberized) Hadoop cluster

176 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

The output will give you the image identity:

REPOSITORY TAG IMAGE
ID CREATED VIRTUAL SIZE
utilities 1.5.0.0-403.cb6738e
186bd8577a7a 2 weeks ago 738.5 MB

c. Start and enter utilities image.
For example:

sudo docker run -v /opt/emc/caspian/fabric/agent/services/
object/main/log:/opt/storageos/logs
-v /home/admin/ansible/viprfs-client-3.0.0.0.85325.a05145b/
playbooks:/ansible --name=ecs-tools -i -t --privileged --
net=host 186bd8577a7a /bin/bash

In the example, the location to which the Ansible playbooks were unzipped /
home/admin/ansible/viprfs-client-3.0.0.0.85325.a05145b/
playbooks is mapped to the /ansible directory in the utility container.

6. Change to the working directory in the container.
For example:

cd /ansible

7. Copy the krb5.conf file from the KDC to the working directory.

8. Install the supplied Ansible roles.

ansible-galaxy install -r requirements.txt -f

9. Edit the generate-vipr-keytabs.yml as necessary and set the domain
name.
For example:

[root@nile3-vm22 samples]# cat generate-vipr-keytabs.yml

###
Generates keytabs for ViPR/ECS data nodes.
###

- hosts: data_nodes
 serial: 1

 roles:
 - role: vipr_kerberos_principal
 kdc: "{{ groups.kdc | first }}"
 principals:
 - name: vipr/_HOST@MA.EMC.COM
 keytab: keytabs/_HOST@MA.EMC.COM.keytab

In this example, the default value (vipr/_HOST@EXAMPLE.COM) has been
replaced with (vipr/_HOST@MA.EMC.COM) and the domain is MA.EMC.COM.

10. Run the following command.

export ANSIBLE_HOST_KEY_CHECKING=False

Configure ECS HDFS integration with a secure (Kerberized) Hadoop cluster

Configure ECS nodes with the ECS Service Principal 177

11. Run the Ansible playbook to generate keytabs.

ansible-playbook -v -k -i inventory.txt --user admin –b --
become-user=root generate-vipr-keytabs.yml

12. Edit the setup-vipr-kerberos.yml file as necessary.

The default file contents are shown below.

cat setup-vipr-kerberos.yml

Configures ViPR/ECS for Kerberos authentication.
- Configures krb5 client
- Installs keytabs
- Installs JCE policy
###

 - hosts: data_nodes

 roles:
 - role: vipr_kerberos_config
 krb5:
 config_file: krb5.conf
 service_principal:
 name: vipr/_HOST@EXAMPLE.COM
 keytab: keytabs/_HOST@EXAMPLE.COM.keytab

 - role: vipr_jce_config
 jce_policy:
 name: unlimited
 src: UnlimitedJCEPolicy/

In this example, the default value (vipr/_HOST@EXAMPLE.COM) has been
replaced with (vipr/_HOST@MA.EMC.COM) and the domain is MA.EMC.COM.

Note

Remove the "vipr_jce_config" role if you are not using strong encryption type.

13. Run the Ansible playbook to configure the data nodes with the ECS service
principal.

Make sure the /ansible/samples/keytab directory exist and the
krb5.conf file is in the working directory /ansible/samples directory.

ansible-playbook -v -k -i inventory.txt --user admin –b --
become-user=root setup-vipr-kerberos.yml

Verify that the correct ECS service principal, one per data node, has been
created (from the KDC):

kadmin.local -q "list_principals" | grep vipr
vipr/nile3-vm42.centera.lab.emc.com@MA.EMC.COM
vipr/nile3-vm43.centera.lab.emc.com@MA.EMC.COM

Configure ECS HDFS integration with a secure (Kerberized) Hadoop cluster

178 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

Verify that correct keytab is generated and stored in location: /data/hdfs/
krb5.keytab on all ECS data nodes. You can use the "strings" command on
the keytab to extract the human readable text, and verify that it contains the
correct principal. For example:

dataservice-10-247-199-69:~ # strings /data/hdfs/krb5.keytab
MA.EMC.COM
vipr
nile3-vm42.centera.lab.emc.com

In this case the principal is vipr/nile3-vm42.centera.lab.emc.com.

Secure the ECS bucket using metadata
To ensure that the ECS bucket can work with a secure Hadoop cluster, the bucket
must have access to information about the cluster.

In a secure Hadoop cluster, the Kerberos principal must be mapped to a HDFS
username. In addition, the user must be mapped to a Unix group. Within the Hadoop
cluster, the NameNode gathers this information from the Hadoop nodes themselves
and from the configuration files (core-site.xml and hdfs.xml).

To enable the ECS nodes to determine this information and to validate client requests,
the following data must be made available to the ECS nodes:

l Kerberos user to Unix user and group mapping

l Superuser group

l Proxy user settings

The data is made available to the ECS nodes as a set of name-value pairs held as
metadata.

Kerberos users
Information about every Kerberos user (not AD users) that needs to have Hadoop
access to a bucket needs to be uploaded to ECS. The following data is required:

l Principal name

l Principal shortname (mapped name)

l Principal groups

If there are 10 Kerberos principals on your Hadoop node, you must create 30 name
value pairs in the JSON input file. Every name must be unique, so you will need to
uniquely assign a name for every Principal name, Principal shortname, and Principal
groups. ECS expects a constant prefix and suffix for the JSON entry names.

The required prefix for every Kerberos user entry is "internal.kerberos.user", and the
three possible suffixes are name, shortname and groups. An example is show below.

{
 "name": "internal.kerberos.user.hdfs.name",
 "value": "hdfs-cluster999@EXAMPLE_HDFS.EMC.COM"
},
{
 "name": "internal.kerberos.user.hdfs.shortname",
 "value": "hdfs"
},
{
 "name": "internal.kerberos.user.hdfs.groups",

Configure ECS HDFS integration with a secure (Kerberized) Hadoop cluster

Secure the ECS bucket using metadata 179

 "value": "hadoop,hdfs"
},

The value between the prefix and suffix can be anything, as long is it uniquely
identifies the entry. For example, you could use:

"name": "internal.kerberos.user.1.name",
"name": "internal.kerberos.user.1.shortname",
"name": "internal.kerberos.user.1.groups",

Principals can map to a different users. For example, the "rm" principal user is usually
mapped to the "yarn" users using auth_to_local setting for the Hadoop cluster, like
this.

RULE:[2:$1@$0](rm@EXAMPLE_HDFS.EMC.COM)s/.*/yarn/

So for any principal that maps to a different principal (for example, the rm principal
maps to yarn principal), you must use the 'mapped' principal in the shortname value,
so the entry for rm principal would be:

{
"name": "internal.kerberos.user.rm.name",
"value": "rm@EXAMPLE_HDFS.EMC.COM"
},
{
"name": "internal.kerberos.user.yarn.shortname",
"value": "yarn@EXAMPLE_HDFS.EMC.COM"
},
{
"name": "internal.kerberos.user.yarn.groups",
"value": "hadoop"
},

Supergroup
You will need to tell the ECS which Linux group of users on the Hadoop nodes will get
superuser privileges based on their group. Only one entry in the JSON input file will be
expected for the supergroup designation. It should be like this:

{
 "name": "dfs.permissions.supergroup",
 "value": "hdfs"
}

Proxy settings
For proxy support, you need to identify all proxy settings that are allowed for each
Hadoop application' where application means one of the Hadoop-supported
applications, for example, hive, hbase, etc.

In the example below, proxy support for the hive application is granted to users who
are members of the group s3users (AD or Linux group), and can run hive on any of the

Configure ECS HDFS integration with a secure (Kerberized) Hadoop cluster

180 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

hosts in the Hadoop cluster. So the JSON entry for this would be two name/value
pairs, one for the hosts setting, and one for the groups setting.

{
 "name": "hadoop.proxyuser.hive.hosts",
 "value": "*"
},
{
 "name": "hadoop.proxyuser.hive.groups",
 "value": "s3users"
}

The complete file
The three types of metadata must be combined into a single JSON file. The JSON file
format is as below.

{
 "head_type": "hdfs",
 "metadata": [
 {
 "name": "METADATANAME_1",
 "value": "METADATAVALUE_1"
 },
 {
 "name": "METADATANAME_2",
 "value": "METADATAVALUE_2"
 },

 :

 {
 "name": "METADATANAME_N",
 "value": "METADATAVALUE_N"
 }
]
}

Note

The last name/value pair does not have a trailing ',' character.

An example of a JSON file is shown in: Secure bucket metadata on page 212.

Secure and non-secure buckets
Once metadata is loaded into a bucket, it is referred to as a "secure bucket" and you
must have Kerberos principals to access it. A request from a non-secure Hadoop node
will be rejected. If metadata has not been loaded, the bucket is not secure and a
request from a secure Hadoop node will be rejected.

The following error will be seen if you try and access a secure bucket from a non-
secure cluster. A similar message is seen if you try and access a non-secure bucket
from a secure cluster.

[hdfs@sandbox ~]$ hadoop fs -ls -R viprfs://hdfsBucket3.s3.site1/
ls: ViPRFS internal error (ERROR_FAILED_TO_PROCESS_REQUEST).

Configure ECS HDFS integration with a secure (Kerberized) Hadoop cluster

Secure the ECS bucket using metadata 181

Load metadata values to ECS using the Management REST API
The metadata values required to secure an ECS bucket for use with a secure Hadoop
cluster can be supplied by running ECS Management REST API commands.

Before you begin

You must have ECS System Admin credentials.

If the Hadoop administrator is NOT the ECS administrator, the Hadoop administrator
will need to work in conjunction with the ECS System Admin to load the secure
metadata to the bucket.

The Hadoop administrator can make the JSON metadata file available to the ECS
System Admin, who can then use this procedure to load the metadata. If the two roles
are assumed by the same user, then that user would be responsible for creating the
JSON metadata file and loading it to the ECS bucket.

Procedure

1. Create the JSON file that contains the metadata described in: Secure the ECS
bucket using metadata on page 179.

2. Log in to ECS using your System Admin credentials in order to obtain an
authentication token that can be used when running ECS management
commands.

You can run this command using curl. In the example below, you will need to
replace the <username>:<password> with ECS System Admin credentials and
supply the IP address or hostname of an ECS node.

TOKEN=$(curl -s -k -u <username>:<password> -D - -o /dev/null
https://<ECS node IP or hostname>:4443/login | grep X-SDS-
AUTH-TOKEN | tr -cd '\40-\176')

3. Run the ECS Management REST API command to deploy the metadata.

The API is: PUT object/bucket/<bucketname>/metadata. An example of
running this command using curl is shown below.

 curl -s -k -X PUT -H "$TOKEN" -H "Accept: application/json" -
H "Content-Type: application/json" -T <bucketDetails>.json
https:/<hostname>:4443/object/bucket/<bucketname>/metadata?
namespace=<namespace>

You will need to replace:

l <username> with an ECS system administrator username.

l <password> with the password for the specified ECS System Admin
username.

l <bucketname> with the name of the bucket you are using for HDFS data.

l <hostname> with the IP address or hostname of an ECS node.

l <bucketdetails> with the filename of the JSON file containing name-value
pairs.

l <namespace> with the name of the namespace the bucket resides in.

Configure ECS HDFS integration with a secure (Kerberized) Hadoop cluster

182 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

Once deployed, the metadata will be available to all ECS nodes.

Edit core-site.xml
Use this procedure to update core-site.xml with the properties that are required
when using ECS HDFS with a ECS cluster that uses Kerberos authentication mode.

Before you begin

l It is always preferable to add/manage these properties using a Hadoop
management UI to reduce the chance of errors and to ensure these changes are
persistent across the cluster. Manually editing files on multiple Hadoop nodes is
cumbersome and error prone. You must have a set of user credentials that enable
you to log in to the management UI for your distribution.

l If you do modify core-site.xml directly, you must have a set of user
credentials that enable you to log in to Hadoop nodes and modify core-
site.xml.

Some properties are specific to ECS and usually need to be added to core-
site.xml. If you are using the Hortonworks Ambari Hadoop ECS stack, the ECS-
specific parameters are already present.

If you intend to edit core-site.xml directly, the location of core-site.xml
depends on the distribution you are using, as shown in the following table.

Table 22 Location of core-site.xml files

ECS
Distribution

core-site.xml location Nodes to
update

Hortonworks /etc/hadoop/conf All nodes

core-site.xml resides on each node in the Hadoop cluster, and you must modify
the same properties in each instance. You can make the change in one node, and then
use secure copy command (scp) to copy the file to the other nodes in the cluster. As a
best practice, back up core-site.xml before you start the configuration procedure.

See core_site.xml property reference for more information about each property you
need to set.

Procedure

1. If you are using a management interface, such as Hortonworks Ambari, log in as
an administrator and go to the HDFS configuration page.

2. If you intend to make the changes by manually editing core-site.xml, follow
the steps below.

a. Log in to one of the HDFS nodes where core-site.xml is located.

b. Make a backup copy of core-site.xml.

cp core-site.xml core-site.backup
c. Using the text editor of your choice, open core-site.xml for editing.

3. Add the following properties and values to define the Java classes that
implement the ECS HDFS file system:

<property>
<name>fs.viprfs.impl</name>

Configure ECS HDFS integration with a secure (Kerberized) Hadoop cluster

Edit core-site.xml 183

<value>com.emc.hadoop.fs.vipr.ViPRFileSystem</value>
</property>

<property>
<name>fs.AbstractFileSystem.viprfs.impl</name>
<value>com.emc.hadoop.fs.vipr.ViPRAbstractFileSystem</value>
</property>

4. Add the fs.vipr.installations property. In the following example, the value is set
to Site1.

<property>
 <name>fs.vipr.installations</name>
 <value>Site1</value>
</property>

5. Add the fs.vipr.installation.[installation_name].hosts property as a comma-
separated list of ECS data nodes or load balancer IP addresses. In the following
example, the installation_name is set to Site1.

<property>
 <name>fs.vipr.installation.Site1.hosts</name>
 <value>203.0.113.10,203.0.113.11,203.0.113.12</value>
</property>

6. Add the fs.vipr.installation.[installation_name].resolution property, and set it to
one of the following values:

Option Description

dynamic Use when accessing ECS data nodes directly without a load
balancer.

fixed Use when accessing ECS data nodes through a load balancer.

In the following example, installation_name is set to Site1.

<property>
 <name>fs.vipr.installation.Site1.resolution</name>
 <value>dynamic</value>
</property>

a. If you set fs.vipr.installation.[installation_name].resolution to dynamic, add
the fs.vipr.installation.
[installation_name].resolution.dynamic.time_to_live_ms property to specify
how often to query ECS for the list of active nodes.

In the following example, installation_name is set to Site1.

<property>
<name>fs.vipr.installation.Site1.resolution.dynamic.time_to_
live_ms</name>
<value>900000</value>
</property>

7. Locate the fs.defaultFS property and modify the value to specify the ECS file
system URI. .

Configure ECS HDFS integration with a secure (Kerberized) Hadoop cluster

184 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

This setting is optional and you can specify the full file system URL to connect
to the ECS ViPRFS.

Use the following format: viprfs://
<bucket_name.namespace.installation_name, where

l bucket_name: The name of the bucket that contains the data you want to
use when you run Hadoop jobs. If running in simple authentication mode, the
owner of the bucket must grant permission to Everybody. In the following
example, the bucket_name is set to mybucket.

l namespace: The tenant namespace where bucket_name resides. In the
following example, the namespace is set to mynamespace.

l installation_name: The value specified by the fs.vipr.installations property. In
the following example, installation_name is set to Site1.

<property>
 <name>fs.defaultFS</name>
 <value>viprfs://mybucket.mynamespace.Site1/</value>
</property>

8. Locate fs.permissions.umask-mode, and set the value to 022.

In some configurations, this property might not already exist. If it does not, then
add it.

<property>
 <name>fs.permissions.umask-mode</name>
 <value>022</value>
</property>

9. Add the fs.viprfs.auth.anonymous_translation property; used to specify the
owner and group of a file or directory created using HDFS.

Note

Prior to ECS 2.2, this parameter was used to assign an owner to files and
directories that were created without an owner (anonymously owned files) so
that the current user had permission to modify them. Files and directories are
no longer created anonymously and have an owner assigned according to the
setting of this parameter.

Option Description

LOCAL_USER Use this setting with a Hadoop cluster that uses simple
security. Assigns the Unix user and group of the Hadoop
cluster to newly created files and directories.

CURRENT_USER Use this setting for a Kerberized Hadoop cluster. Assigns
the Kerberos principal (user@REALM.COM) as the file or
directory owner, and uses the group that has been
assigned as the default for the bucket.

NONE (default) (Deprecated) Previously indicated that no mapping from
the anonymously owned objects to the current user should
be performed.

<property>
 <name>fs.viprfs.auth.anonymous_translation</name>

Configure ECS HDFS integration with a secure (Kerberized) Hadoop cluster

Edit core-site.xml 185

 <value>LOCAL_USER</value>
</property>

10. Add the fs.viprfs.auth.identity_translation property, and set it to
CURRENT_USER_REALM, which maps to the realm of the user signed in via
kinit.

<property>
 <name>fs.viprfs.auth.identity_translation</name>
 <value>CURRENT_USER_REALM</value>
</property>

11. Add the viprfs.security.principal property. This property tells the KDC who the
ECS user is.

The principal name can include "_HOST" which is automatically replaced by the
actual data node FQDN at run time.

<property>
 <name>viprfs.security.principal</name>
 <value>vipr/_HOST@example.com</value>
</property>

12. Add the cached location of Kerberos tickets.

For example:

<property>
<name>hadoop.security.kerberos.ticket.cache.path</name>
 <value>/tmp/<krbcc_1000</value>
</property>

The value can be obtained from the output of the klist command.

13. Use Hortonworks Ambari to update the core-site.xml with the same set of
properties and values.

Restart and verify access
Once you have performed the configuration steps, you can restart the Hadoop
services and check that you have access to the HDFS.

When the system is configured to use ECS HDFS, the HDFS NameNode can fail to
start. When ECS HDFS is configured as the HDFS, ECS HDFS performs all NameNode
functions and does not require the NameNode to be up.

Procedure

1. Restart the Hadoop services.

This will normally include HDFS, MapReduce, Yarn, and HBase.

If you are restarting the services manually, you can refer to the table below.

Hadoop Distribution Commands

Hortonworks # stop-all.sh
start-all.sh

Configure ECS HDFS integration with a secure (Kerberized) Hadoop cluster

186 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

Hadoop Distribution Commands

2. Test the configuration by running the following command to get a directory
listing:

kinit <service principal>

hdfs dfs -ls viprfs://mybucket.mynamespace.Site1/

13/12/13 22:20:37 INFO vipr.ViPRFileSystem: Initialized
ViPRFS for viprfs://mybucket.mynamespace.Site1/

Configure ECS HDFS integration with a secure (Kerberized) Hadoop cluster

Restart and verify access 187

Configure ECS HDFS integration with a secure (Kerberized) Hadoop cluster

188 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

CHAPTER 25

Guidance on Kerberos configuration

l Guidance on Kerberos configuration...190
l Configure one or more new ECS nodes with the ECS Service Principal............193

Guidance on Kerberos configuration 189

Guidance on Kerberos configuration
Provides guidance on configuring Kerberos in the Hadoop cluster.

Set up the Kerberos KDC
Set up the Kerberos KDC by following these steps.

Procedure

1. Install krb5-workstation.

Use the command:

yum install -y krb5-libs krb5-server krb5-workstation

2. Modify /etc/krb5.conf and change the realm name and extensions.

3. Modify /var/kerberos/krb5kdc/kdc.conf and change the realm name to
match your own.

4. If your KDC is a VM, recreate /dev/random (otherwise your next step of
creating the KDC database will take a very long time).

a. Remove using:

rm -rf /dev/random

b. Recreate using:

 # mknod /dev/random c 1 9

5. Create the KDC database.

 # kdb5_util create -s

Note

If you made a mistake with the initial principals. For example, you ran "kdb5_util
create -s" incorrectly, you might need to delete these principals explicitly in
the /var/kerberos/krb5kdc/ directory.

6. Modify kadm5.acl to specify users that have admin permission.

*/admin@DET.EMC.COM *

7. Modify /var/kerberos/krb5kdc/kdc.conf and take out any encryption
type except des-cbc-crc:normal. Also modify the realm name.

Guidance on Kerberos configuration

190 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

8. Ensure iptables and selinux are off on all nodes (KDC server as well as Hadoop
nodes).

9. Start KDC services and create a local admin principal.

kadmin.local

service krb5kdc start

service kadmin start

/usr/kerberos/sbin/kadmin.local-q "addprinc root/admin"

kinit root/admin

10. Copy the krb5.conf file to all Hadoop nodes.

Any time you make a modification to any of the configuration files restart the
below services and copy the krb5.conf file over to relevant Hadoop host and
ECS nodes.

11. Restart the services.

service krb5kdc restart

service kadmin restart

12. You can visit following link to setup a Kerberos KDC based on steps at http://
www.centos.org/docs/4/html/rhel-rg-en-4/s1-kerberos-server.html.

Configure AD user authentication for Kerberos
Where you have a Hadoop environment configured with Kerberos security, you can
configure it to authenticate against the ECS AD domain.

Make sure you have an AD user for your ADREALM. The user "detscr" for ADREALM
CAMBRIDGE.ACME.COM is used in the example below. Create a one-way trust
between the KDCREALM and the ADREALM as shown in the example. Do not try to
validate this realm using "netdom trust".

On Active Directory
You must set up a one-way cross-realm trust from the KDC realm to the AD realm. To
do so, run the following commands at a command prompt.

ksetup /addkdc KDC-REALM <KDC hostname>
netdom trust KDC-REALM /Domain:AD-REALM /add /realm /
passwordt:<TrustPassword>
ksetup /SetEncTypeAttr KDC-REALM <enc_type>

For example:

ksetup /addkdc LSS.EMC.COM lcigb101.lss.emc.com
netdom trust LSS.ACME.COM /Domain:CAMBRIDGE.ACME.COM /add /realm /
passwordt:ChangeMe
ksetup /SetEncTypeAttr LSS.ACME.COM DES-CBC-CRC

Guidance on Kerberos configuration

Configure AD user authentication for Kerberos 191

https://www.centos.org/docs/5/html/5.1/Deployment_Guide/s1-kerberos-server.html
https://www.centos.org/docs/5/html/5.1/Deployment_Guide/s1-kerberos-server.html

For this example, encryption des-cbc-crc was used. However, this is a weak
encryption that was only chosen for demonstration purposes. Whatever encryption
you choose, the AD, KDC, and clients must support it.

On your KDC (as root)
To set up a one-way trust, you will need to create a "krbtgt" service principal. To do
so, the name is krbtgt/KDC-REALM@AD-REALM. Give this the password ChangeMe,
or whatever you specified to the /passwordt argument above.

1. On KDC (as root)

kadmin
kadmin: addprinc -e "des-cbc-crc:normal" krbtgt/
LSS.ACME.COM@CAMBRIDGE.ACME.COM

Note

When deploying, it is best to limit the encryption types to the one you chose. Once
this is working, additional encryption types can be added.

2. Add the following rules to your core-site.xml hadoop.security.auth_to_local
property:

RULE:[1:$1@$0](^.*@CAMBRIDGE\.ACME\.COM$)s/^(.*)@CAMBRIDGE\.ACME
\.COM$/$1/g
RULE:[2:$1@$0](^.*@CAMBRIDGE\.ACME\.COM$)s/^(.*)@CAMBRIDGE\.ACME
\.COM$/$1/g

3. Verify that AD or LDAP is correctly setup with the Kerberos (KDC) server. User
should be able to "kinit" against an AD user and list local HDFS directory.

Note

If you are configuring your Hadoop cluster and ECS to authenticate through an
AD, create local Linux user accounts on all Hadoop nodes for the AD user you will
be kinit'ed as, and also make sure that all Hadoop host are kinit'ed using that AD
user. For example, if you kinit as userX@ADREALM, create userX as a local user
on all Hadoop hosts, and kinit using: 'kinit userX@ADREALM' on all hosts for that
user.

In the example below, we will authenticate as "kinit detscr@CAMBRIDGE.EMC.COM",
so will create a user called "detscr" and kinit as this user on the Hadoop host. As
shown below:

[root@lviprb159 ~]# su detscr
 [detscr@lviprb159 root]$ whoami
 detscr
 [detscr@lviprb159 root]$ kinit detscr@CAMBRIDGE.ACME.COM
 Password for detscr@CAMBRIDGE.ACME.COM:
 [detscr@lviprb159 root]$ klist
 Ticket cache: FILE:/tmp/krb5cc_1010
 Default principal: detscr@CAMBRIDGE.ACME.COM
 Valid starting Expires Service principal
 12/22/14 14:28:27 03/02/15 01:28:30 krbtgt/
CAMBRIDGE.ACME.COM@CAMBRIDGE.ACME.COM
 renew until 09/17/17 15:28:27

 [detscr@lviprb159 root]$ hdfs dfs -ls /
Found 4 items
drwx---rwx - yarn hadoop 0 2014-12-23 14:11 /app-logs

Guidance on Kerberos configuration

192 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

drwx---rwt - hdfs 0 2014-12-23 13:48 /apps
drwx---r-x - mapred 0 2014-12-23 14:11 /mapred
drwx---r-x - hdfs 0 2014-12-23 14:11 /mr-history

Configure one or more new ECS nodes with the ECS Service
Principal

Where you are adding one or more new nodes to an ECS configuration, the ECS
service principal and corresponding keytab must be deployed to the new nodes.

Before you begin

l This procedure assumes that you have previously performed the steps here and
have the Ansible playbooks installed and accessible.

You must have the following items before you can complete this procedure:

l The list of ECS node IP addresses.

l IP address of the KDC.

l The DNS resolution where you run this script should be the same as the DNS
resolution for the Hadoop host, otherwise the vipr/_HOST@REALM will not work.

Procedure

1. Log in to Node 1 and check that the tools have previously been installed and the
playbooks are available.

The example used previously was:

/home/admin/ansible/viprfs-client-<ECS version>-<version>/
playbooks

2. Edit inventory.txt in the playbooks/samples directory to add the added
ECS nodes.

The default entries are shown below.

[data_nodes]
192.168.2.[100:200]

[kdc]
192.168.2.10

3. Start the utility container on ECS Node 1 and make the Ansible playbooks
available to the container.

a. Load the utility container image.

For example:

sudo docker load -i /opt/emc/caspian/checker/docker/images/
utilities.txz

b. Get the identity of the docker image.

Guidance on Kerberos configuration

Configure one or more new ECS nodes with the ECS Service Principal 193

For example:

admin@provo-lilac:~> sudo docker images

The output will give you the image identity:

REPOSITORY TAG IMAGE
ID CREATED VIRTUAL SIZE
utilities 1.5.0.0-403.cb6738e
186bd8577a7a 2 weeks ago 738.5 MB

c. Start and enter utilities image.

For example:

sudo docker run -v /opt/emc/caspian/fabric/agent/services/
object/main/log:/opt/storageos/logs
-v /home/admin/ansible/viprfs-client-3.0.0.0.85325.a05145b/
playbooks:/ansible --name=ecs-tools -i -t --privileged --
net=host 186bd8577a7a /bin/bash

In the example, the location to which the Ansible playbooks were unzipped /
home/admin/ansible/viprfs-client-3.0.0.0.85325.a05145b/
playbooks is mapped to the /ansible directory in the utility container.

4. Change to the working directory in the container.

For example:

cd /ansible

5. Run the Ansible playbook to generate keytabs.

ansible-playbook -v -k -i inventory.txt generate-vipr-
keytabs.yml

6. Run the Ansible playbook to configure the data nodes with the ECS service
principal.

Make sure the /ansible/samples/keytab directory exists and the
krb5.conf file is in the working directory /ansible/samples directory.

ansible-playbook -v -k -i inventory.txt setup-vipr-
kerberos.yml

Verify that the correct ECS service principal, one per data node, has been
created (from the KDC):

kadmin.local -q "list_principals" | grep vipr
vipr/nile3-vm42.centera.lab.emc.com@MA.EMC.COM
vipr/nile3-vm43.centera.lab.emc.com@MA.EMC.COM

Verify that correct keytab is generated and stored in location: /data/hdfs/
krb5.keytab on all ECS data nodes. You can use the "strings" command on

Guidance on Kerberos configuration

194 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

the keytab to extract the human readable text, and verify that it contains the
correct principal. For example:

dataservice-10-247-199-69:~ # strings /data/hdfs/krb5.keytab
MA.EMC.COM
vipr
nile3-vm42.centera.lab.emc.com

In this case the principal is vipr/nile3-vm42.centera.lab.emc.com.

Guidance on Kerberos configuration

Configure one or more new ECS nodes with the ECS Service Principal 195

Guidance on Kerberos configuration

196 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

CHAPTER 26

Troubleshooting

l Troubleshooting..198
l Verify AD/LDAP is correctly configured with secure Hadoop cluster................198
l Restart services after hbase configuration... 199
l Pig test fails: unable to obtain Kerberos principal... 199
l Permission denied for AD user.. 199
l Permissions errors.. 199
l Failed to process request... 203
l Enable Kerberos client-side logging and debugging..203
l Debug Kerberos on the KDC.. 204
l Eliminate clock skew.. 204

Troubleshooting 197

Troubleshooting
This area provides workarounds for issue that may be encountered when configuring
ECS HDFS.

Verify AD/LDAP is correctly configured with secure Hadoop
cluster

You should verify that AD or LDAP is correctly set up with Kerberos (KDC) and the
Hadoop cluster.

When your configuration is correct, you should be able to "kinit" against an AD/LDAP
user. In addition, if the Hadoop cluster is configured for local HDFS, you should check
that you can list the local HDFS directory before ECS gets added to the cluster.

Workaround
If you cannot successfully authenticate as an AD/LDAP user with the KDC on the
Hadoop cluster, you should address this before proceeding to ECS Hadoop
configuration.

An example of a successful login is shown below:

[kcluser@lvipri054 root]$ kinit kcluser@QE.COM
Password for kcluser@QE.COM:

[kcluser@lvipri054 root]$ klist
Ticket cache: FILE:/tmp/krb5cc_1025
Default principal: kcluser@QE.COM

Valid starting Expires Service principal
04/28/15 06:20:57 04/28/15 16:21:08 krbtgt/QE.COM@QE.COM
 renew until 05/05/15 06:20:57

If the above is not successful, you can investigate using the following checklist:

l Check /etc/krb5.conf on the KDC server for correctness and syntax. Realms
can be case sensitive in the config files as well as when used with the kinit
command.

l Check that /etc/krb5.conf from the KDC server is copied to all the Hadoop
nodes.

l Check that one-way trust between AD/LDAP and the KDC server was successfully
made. Refer to appropriate documentation on how to do this.

l Make sure that the encryption type on the AD/LDAP server matches that on the
KDC server.

l Check that /var/kerberos/krb5kdc/kadm5.acl and /var/kerberos/
krb5kdc/kdc.conf are correct.

l Try logging in as a service principal on the KDC server to indicate that the KDC
server itself is working correctly.

Troubleshooting

198 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

l Try logging in as the same AD/LDAP user on the KDC server directly. If that does
not work, the issue is likely to be on the KDC server directly.

Restart services after hbase configuration
After editing the hbase.rootdir property in hbase-site.xml, the hbase service does not
restart correctly.

Workaround
The following steps should be performed when this issue arises on Hortonworks to get
hbase-master running.

1. Connect to the zookeeper cli.

hbase zkcli

2. Remove the hbase directory.

rmr /hbase

3. Restart the hbase service.

Pig test fails: unable to obtain Kerberos principal
Pig test fails with the following error: "Info:Error: java.io.IOException: Unable to obtain
the Kerberos principal" even after kinit as AD user, or with "Unable to open iterator
for alias firstten".

This issue is caused due to the fact that Pig (<0.13) doesn't generate a delegation
token for ViPRFS as a secondary storage.

Workaround
Append the viprfs://bucket.ns.installation/ to the
mapreduce.job.hdfs-servers configuration setting. For example:

set mapreduce.job.hdfs-servers viprfs://KcdhbuckTM2.s3.site1

Permission denied for AD user
When running an application as an AD user, a "Permission denied" error is raised.

Workaround
Set the permissions for the /user directory as:

hdfs dfs -chmod 1777 /user

Permissions errors
Insufficient permissions errors can occur for a number of reasons. You may receive it
when running a hadoop fs command, or you may see it in application log, such as the
log for mapreduce or hive.

Troubleshooting

Restart services after hbase configuration 199

INSUFFICIENT_PERMISSIONS errors

In the example below, the "jhs" principal tried to create a directory (/tmp) and
received an INSUFFICIENT_PERMISSIONS error. In this case, the permissions of the
root directory did not allow this user to create a directory. The cause of this error
should be obvious to most users.

root@lrmk042:/etc/security/keytabs# hadoop fs -mkdir /tmp
15/11/08 21:03:09 ERROR vipr.ViPRFileSystemClientBase: Permissions
failure for request: User: jhs/
lrmk042.lss.emc.com@HOP171_HDFS.EMC.COM (auth:KERBEROS), host:
hdfsBucket3.s3.site1, namespace: s3, bucket: hdfsBucket3
15/11/08 21:03:09 ERROR vipr.ViPRFileSystemClientBase: Request
message sent:
MkDirRequestMessage[kind=MKDIR_REQUEST,namespace=s3,bucket=hdfsBucke
t3,path=/
tmp,hdfsTrustedStatus=HDFS_USER_NOT_TRUSTED,permissions=rwxr-xr-
x,createParent=true]
mkdir: java.security.AccessControlException:
ERROR_INSUFFICIENT_PERMISSIONS

root@lrmk042:/etc/security/keytabs# hadoop fs -ls -d /
drwxr-xr-x - hdfs hdfs 0 2015-11-08 16:58 /
root@lrmk042:/etc/security/keytabs#

When the case of an insufficient permissions error is not obvious on the client, you
may have to look at the server logs. Start with dataheadsvc-error.log to find
the error. Open a terminal window to each ECS node, and edit the dataheadsvc-
error.log file. Find the error that corresponds to the time you saw the error on the
client.

Failed to get credentials

Where you see an error like that below in the dataheadsvc-error.log:

2015-11-08 22:36:21,985 [pool-68-thread-6] ERROR
RequestProcessor.java (line 1482) Unable to get group credentials
for principal 'jhs@HOP171_HDFS.EMC.COM'. This principal will
default to use local user groups. Error message:
java.io.IOException: Failed to get group credentials for
'jhs@HOP171_HDFS.EMC.COM', status=ERROR

This is not an error. The message means that the server tried to look up the principal's
name to see if there are any cached Active Directory groups for the principal user
making the request. For a Kerberos user, this will return this error.

The error will tell you the user name making the request. Make a note of it.

Bucket Access Error

If a user making are request to access a bucket does not have ACL permissions, you
could see this error stack in dataheadsvc-error.log.

2015-11-08 21:35:26,652 [pool-68-thread-1] ERROR BucketAPIImpl.java
(line 220) Getting bucket failed with
com.emc.storageos.objcontrol.object.exception.ObjectAccessException:
 you don't have GET_KEYPOOL_ACL permission to this keypool

Troubleshooting

200 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

at
com.emc.storageos.objcontrol.object.exception.ObjectAccessException.
createExceptionForAPI(ObjectAccessException.java:286)
at
com.emc.storageos.data.object.ipc.protocol.impl.ObjectAccessExceptio
nParser.parseFrom(ObjectAccessExceptionParser.java:61)

In this case, you should either add an explicit user ACL for the bucket, or add a custom
group ACL for one of the groups that the user is a member of.

Object Access Error

Another type of permission error is an object access error. Access to objects (files and
directories) should not be confused with access to a bucket. A user may have full
control (read/write/delete) to a bucket, but may receive an
INSUFFICIENT_PERMISSIONS error because they do not have access to one or more
objects in the path they are trying to access. The stack below is an example of an
object access error:

2015-11-08 22:36:21,995 [pool-68-thread-6] ERROR
FileSystemAccessHelper.java (line 1364) nfsProcessOperation failed
to process path: mr-history/done
2015-11-08 22:36:21,995 [pool-68-thread-6] ERROR
ObjectControllerExceptionHelper.java (line 186) Method nfsGetSMD
failed due to exception
com.emc.storageos.data.object.exception.ObjectControllerException:
directory server returns error ERROR_ACCESS_DENIED
at
com.emc.storageos.data.object.FileSystemAccessLayer.FileSystemAccess
Helper.nfsProcessOperation(FileSystemAccessHelper.java:1368)
at
com.emc.storageos.data.object.FileSystemAccessLayer.FileSystemAccess
Helper.getSystemMetadata(FileSystemAccessHelper.java:466)
at
com.emc.storageos.data.object.FileSystemAccessLayer.FileSystemAccess
Layer.getSystemMetadata(FileSystemAccessLayer.java:532)
at
com.emc.storageos.data.object.blob.client.BlobAPI.getStat(BlobAPI.ja
va:1294)
at com.emc.vipr.engine.real.RealBlobEngine.stat(RealBlobEngine.java:
1976)
at com.emc.vipr.engine.real.RealBlobEngine.stat(RealBlobEngine.java:
802)
at
com.emc.vipr.hdfs.fs.RequestProcessor.accept(RequestProcessor.java:
499)
at com.emc.vipr.hdfs.net.ConnectionManager
$RequestThread.run(ConnectionManager.java:136)
at
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor
.java:1142)
at java.util.concurrent.ThreadPoolExecutor
$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)

The two important items to note here are the requested action (stat) and the path of
the object (mr-history/done). Note that the leading slash character is not displayed,
so the real path is /mr-history/done. Now you have three pieces of information that
are important for debugging:

l user principal (jhs@HOP171_HDFS.EMC.COM)

Troubleshooting

Permissions errors 201

l action (stat is hadoop fs -ls)

l path (/mr-history/done)

There are two approaches for additional debugging:

l Blobsvc Log Debugging on page 202

l Hadoop Client Debugging on page 202

Blobsvc Log Debugging
A failed permission request will have an error in blobsvc like this:

2015-11-08 22:36:21,994
[TaskScheduler-BlobService-COMMUNICATOR-ParallelExecutor-5892]
ERROR ObjectAclChecker.java (line 101) not permit, cred
jhs@HOP171_HDFS.EMC.COM[hadoop]false1 with
action GET_OBJECT_ACL on object with acl/owner/group
user={hdfs@hop171_hdfs.emc.com=[FULL_CONTROL]},
groups={hdfs=[READ_ACL, EXECUTE, READ]}, other=[],
owner=hdfs@hop171_hdfs.emc.com, group=hdfs

Just look for 'not permit'. This tells us the user making the request (jhs), the object's
owner (hdfs), object group (hdfs) and the permissions for owner, group and others.
What it doesn't tell us is the actual object that failed the permission check. On the
Hadoop node, become the hdfs principal, and start with the path, and work up the
tree, which leads to the other method of debugging, looking at the Hadoop file system
from the client.

Hadoop Client Debugging
When a permission error is received, you should know the user principal making the
request, what action the request is, and what items are being requested. In our
example, the jhs user received an error listing the /mr-history/done directory. You can
do some analysis to determine the root cause. If you have access to the superuser
account, perform these steps as that account.

root@lrmk042:/var/log/hadoop-mapreduce/mapred# hadoop fs -ls -d /mr-
history/done
drwxrwxrwt - mapred hadoop 0 2015-11-08 16:58 /mr-history/done

This shows that the jhs principal should have had access to list this directory.

root@lrmk042:/var/log/hadoop-mapreduce/mapred# hadoop fs -ls -d /mr-
history
drwxr-xr-x - hdfs hdfs 0 2015-11-08 16:58 /mr-history

Likewise, this directory has no access issues

root@lrmk042:/var/log/hadoop-mapreduce/mapred# hadoop fs -ls -d /
drwxr-x--- - hdfs hdfs 0 2015-11-08 16:58 /

The problem here, is that the root directory is owned by hdfs, group name is hdfs, but
the others setting is '-' (0). The user making the request is jhs@REALM, and this user
is a member of hadoop, but not hdfs, so this user has no object ACL to list the /mr-

Troubleshooting

202 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

history/done directory. Performing a chmod on the root directory will enable this user
to perform their task.

root@lrmk042:/var/log/hadoop-mapreduce/mapred# hadoop fs -chmod
755 /

root@lrmk042:/var/log/hadoop-mapreduce/mapred# hadoop fs -ls -d /
drwxr-xr-x - hdfs hdfs 0 2015-11-08 16:58 /

Failed to process request
When listing a bucket an error: Failed to Process Request is generated.

When performing list bucket, for example:

hadoop fs -ls viprfs://hdfsBucket2.s3.site1/

The following ViPRFS internal error occurs:

ERROR_FAILED_TO_PROCESS_REQUEST

Workaround
Possible reasons for this error are:

1. Your viprfs-client JAR file on the Hadoop node is not in sync with the ECS
software

2. You are attempting to access a secure (Kerberos) bucket from an non-secure
(non-Kerberos) Hadoop node

3. You are attempting to access a non-secure (non-Kerberos) bucket from a secure
(Kerberos) Hadoop node.

Enable Kerberos client-side logging and debugging
To troubleshoot authentication issues, you can enable verbose logging and debugging
on the Hadoop cluster node that you are using.

Enable client-side verbose logging
Verbose logging is enabled using an environment variable that applies only to your
current SSH session.

 export HADOOP_OPTS="-Dsun.security.krb5.debug=true"

Enable Hadoop client-side debugging
To troubleshoot Hadoop activity between the Hadoop node and the ECS, you can
enable Hadoop verbose logging as follows:

export HADOOP_ROOT_LOGGER="Debug,console"

Troubleshooting

Failed to process request 203

Debug Kerberos on the KDC
Tail the KDC's /var/log/krb5kdc.log file when you do an HDFS operation to
make it easier to debug.

tail -f /var/log/krb5kdc.log

Eliminate clock skew
It is important to ensure that time is synchronized between client and server as
Kerberos relies on time being accurate.

If your AD has a clock skew with your data nodes/KDC, you will have configure its
NTP server. You can do this as follows:

1. Use Remote Desktop to connect to your AD server.

2. Run the following commands:

a. w32tm /config /syncfromflags:manual /manualpeerlist:<ntp-server1>,<ntp-
server2>

b. net stop w32time

c. net start w32time

Troubleshooting

204 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

CHAPTER 27

Hadoop core-site.xml properties for ECS HDFS

l Hadoop core-site.xml properties for ECS HDFS.. 206

Hadoop core-site.xml properties for ECS HDFS 205

Hadoop core-site.xml properties for ECS HDFS
When configuring the Hadoop core-site.xml file, use this table as a reference for
the properties and their related values.

Table 23 Hadoop core-site.xml properties

Property Description

File system implementation properties

fs.viprfs.impl
<property>
<name>fs.viprfs.impl</name>
<value>com.emc.hadoop.fs.vipr.ViPRFileSystem</value>
</property>

fs.AbstractFileSystem.
viprfs.impl <property>

 <name>fs.AbstractFileSystem.viprfs.impl</name>
 <value>com.emc.hadoop.fs.vipr.ViPRAbstractFileSystem</value>
 </property>

Properties that define the authority section of the ECS HDFS file system URI

fs.vipr.installations A comma-separated list of names. The names are further defined by the fs.vipr.installation.
[installation_name].hosts property to uniquely identify sets of ECS data nodes. The names are used
as a component of the authority section of the ECS HFDS file system URI. For example:

<property>
 <name>fs.vipr.installations</name>
 <value><site1>,<abc>,<testsite></value>
 </property>

fs.vipr.installation.
[installation_name].hos
ts

The IP addresses of the ECS cluster's data nodes or the load balancers for each name listed in the
fs.vipr.installations property. Specify the value in the form of a comma-separated list of IP
addresses. For example:

<property>
 <name>fs.vipr.installation.<site1>.hosts</name>
 <value>203.0.113.10,203.0.113.11,203.0.113.12</value>
 </property>

<property>
 <name>fs.vipr.installation.<abc>.hosts</name>
 <value>198.51.100.0,198.51.100.1,198.51.100.2</value>
 </property>

<property>
 <name>fs.vipr.installation.<testsite>.hosts</name>

Hadoop core-site.xml properties for ECS HDFS

206 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

Table 23 Hadoop core-site.xml properties (continued)

Property Description

 <value>198.51.100.10,198.51.100.11,198.51.100.12</value>
 </property>

fs.vipr.installation.
[installation_name].res
olution

Specifies how the ECS HDFS software knows how to access the ECS data nodes. Values are:

l dynamic: Use this value when accessing ECS data nodes directly without a load balancer.

l fixed: Use this value when accessing ECS data nodes through a load balancer.

<property>
 <name>fs.vipr.installation.testsite.resolution</name>
 <value>dynamic</value>
 </property>

fs.vipr.installation.
[installation_name].res
olution.dynamic.time_t
o_live_ms

When the fs.vipr.installation.[installation_name].resolution property is set to dynamic, this property
specifies how often to query ECS for the list of active nodes. Values are in milliseconds. The default
is 10 minutes.

<property>
 <name>fs.vipr.installation.<testsite>.resolution.dynamic.time_to_live_ms</
name>
 <value>600000</value>
 </property>

ECS file system URI

fs.defaultFS A standard Hadoop property that specifies the URI to the default file system. Setting this property
to the ECS HDFS file system is optional. If you do not set it to the ECS HDFS file system, you must
specify the full URI on each file system operation. The ECS HDFS file system URI has this format:

viprfs://[bucket_name].[namespace].[installation_name]

l bucket_name: The name of the HDFS-enabled bucket that contains the data you want to use
when you run Hadoop jobs.

l namespace: The tenant namespace associated with the HDFS-enabled bucket.

l installation_name: The name associated with the set of ECS data nodes that Hadoop can use to
access ECS data. The value of this property must match one of the values specified in the
fs.vipr.installations property.

For example:

<property>
 <name>fs.defaultFS</name>
 <value>viprfs://testbucket.s3.testsite</value>
 </property>

Hadoop core-site.xml properties for ECS HDFS

Hadoop core-site.xml properties for ECS HDFS 207

Table 23 Hadoop core-site.xml properties (continued)

Property Description

HBase requires that a default file system be defined.

UMASK property

fs.permissions.umask-
mode

This standard Hadoop property specifies how ECS HDFS should compute permissions on objects.
Permissions are computed by applying a umask on the input permissions. The recommended value
for both simple and Kerberos configurations is: 022. For example:

<property>
<name>fs.permissions.umask-mode</name>
<value>022</value>
</property>

Identity translation properties

fs.viprfs.auth.identity_t
ranslation

This property specifies how the ECS HDFS client determines what Kerberos realm a particular user
belongs to if one is not specified. ECS data nodes store file owners as username@REALM, while
Hadoop stores file owners as just the username.
The possible values are:

l NONE: Default. Users are not mapped to a realm. Use this setting with a Hadoop cluster that
uses simple security. With this setting ECS HDFS does not perform realm translation.

l CURRENT_USER_REALM: Valid when Kerberos is present. The user's realm is auto-detected,
and it is the realm of the currently signed in user. In the example below, the realm is EMC.COM
because sally is in the EMC.COM realm. The file ownership is changed john@EMC.COM.

kinit sally@EMC.COM
hdfs dfs -chown john /path/to/file

Realms provided at the command line takes precedence over the property settings.

<property>
 <name>fs.viprfs.auth.identity_translation
 </name>
 <value>CURRENT_USER_REALM</value>
 </property>

Note

FIXED_REALM is now deprecated.

fs.viprfs.auth.realm The realm assigned to users when the fs.viprfs.auth.identity_translation property is set to
FIXED_REALM.
This is now deprecated.

fs.viprfs.auth.anonymo
us_translation

This property is used to determine how user and group are assigned to newly created files

Hadoop core-site.xml properties for ECS HDFS

208 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

Table 23 Hadoop core-site.xml properties (continued)

Property Description

Note

This property was previously used to determine what happened to files that had no owner. These
files were said to be owned by "anonymous". Files and directories are no longer anonymously owned
and .

The values are:

l LOCAL_USER: Use this setting with a Hadoop cluster that uses simple security. Assigns the
Unix user and group of the Hadoop cluster to newly created files and directories.

l CURRENT_USER: Use this setting for a Kerberized Hadoop cluster. Assigns the Kerberos
principal (user@REALM.COM) as the file or directory owner, and uses the group that has been
assigned as the default for the bucket.

l NONE: (Deprecated) Previously indicated that no mapping from the anonymously owned
objects to the current user should be performed.

<property>
 <name>fs.viprfs.auth.anonymous_translation</name>
 <value>CURRENT_USER</value>
 </property>

Kerberos realm and service principal properties

viprfs.security.principal This property specifies the ECS service principal. This property tells the KDC about the ECS service.
This value is specific to your configuration.
The principal name can include "_HOST" which is automatically replaced by the actual data node
FQDN at run time.

For example:

<property>
 <name>viprfs.security.principal</name>
 <value>vipr/_HOST@example.com</value>
</property>

Sample core-site.xml for simple authentication mode
This core-site.xml is an example of ECS HDFS properties for simple
authentication mode.

Example 2 core-site.xml

<property>
 <name>fs.viprfs.impl</name>
 <value>com.emc.hadoop.fs.vipr.ViPRFileSystem</value>
</property>

Hadoop core-site.xml properties for ECS HDFS

Sample core-site.xml for simple authentication mode 209

Example 2 core-site.xml (continued)

<property>
 <name>fs.AbstractFileSystem.viprfs.impl</name>
 <value>com.emc.hadoop.fs.vipr.ViPRAbstractFileSystem</value>
</property>

<property>
 <name>fs.vipr.installations</name>
 <value>Site1</value>
</property>

<property>
 <name>fs.vipr.installation.Site1.hosts</name>
 <value>203.0.113.10,203.0.113.11,203.0.113.12</value>
</property>

<property>
 <name>fs.vipr.installation.Site1.resolution</name>
 <value>dynamic</value>
</property>

<property>

<name>fs.vipr.installation.Site1.resolution.dynamic.time_to_live_ms<
/name>
 <value>900000</value>
</property>

<property>
 <name>fs.defaultFS</name>
 <value>viprfs://mybucket.mynamespace.Site1/</value>
</property>

<property>
 <name>fs.viprfs.auth.anonymous_translation</name>
 <value>CURRENT_USER</value>
</property>

<property>
 <name>fs.viprfs.auth.identity_translation</name>
 <value>FIXED_REALM</value>
</property>

<property>
 <name>fs.viprfs.auth.realm</name>
 <value>MY.TEST.REALM</value>
</property>

Hadoop core-site.xml properties for ECS HDFS

210 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

CHAPTER 28

Secure bucket metadata example

l Secure bucket metadata...212

Secure bucket metadata example 211

Secure bucket metadata
The following listing

 {
 "head_type": "hdfs",
 "metadata": [
 {
 "name": "internal.kerberos.user.ambari-qa.name",
 "value": "ambari-qa@EXAMPLE_HDFS.EMC.COM"
 },
 {
 "name": "internal.kerberos.user.ambari-qa.shortname",
 "value": "ambari-qa"
 },
 {
 "name": "internal.kerberos.user.ambari-qa.groups",
 "value": "hadoop,users"
 },
 {
 "name": "internal.kerberos.user.amshbase.name",
 "value": "amshbase@EXAMPLE_HDFS.EMC.COM"
 },
 {
 "name": "internal.kerberos.user.amshbase.shortname",
 "value": "ams"
 },
 {
 "name": "internal.kerberos.user.amshbase.groups",
 "value": "hadoop"
 },
 {
 "name": "internal.kerberos.user.cmaurer.name",
 "value": "cmaurer@EXAMPLE_HDFS.EMC.COM"
 },
 {
 "name": "internal.kerberos.user.cmaurer.shortname",
 "value": "cmaurer"
 },
 {
 "name": "internal.kerberos.user.cmaurer.groups",
 "value":
"cmaurer,adm,cdrom,sudo,dip,plugdev,users,lpadmin,sambashare"
 },
 {
 "name": "internal.kerberos.user.dn.name",
 "value": "dn@EXAMPLE_HDFS.EMC.COM"
 },
 {
 "name": "internal.kerberos.user.dn.shortname",
 "value": "hdfs@EXAMPLE_HDFS.EMC.COM"
 },
 {
 "name": "internal.kerberos.user.dn.groups",
 "value": "hadoop,hdfs"
 },
 {
 "name": "internal.kerberos.user.hbase.name",
 "value": "hbase@EXAMPLE_HDFS.EMC.COM"
 },
 {
 "name": "internal.kerberos.user.hbase.shortname",
 "value": "hbase"
 },
 {

Secure bucket metadata example

212 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

 "name": "internal.kerberos.user.hbase.groups",
 "value": "hadoop"
 },
 {
 "name": "internal.kerberos.user.hdfs.name",
 "value": "hdfs@EXAMPLE_HDFS.EMC.COM"
 },
 {
 "name": "internal.kerberos.user.hdfs.shortname",
 "value": "hdfs"
 },
 {
 "name": "internal.kerberos.user.hdfs.groups",
 "value": "hadoop,hdfs"
 },
 {
 "name": "internal.kerberos.user.hive.name",
 "value": "hive@EXAMPLE_HDFS.EMC.COM"
 },
 {
 "name": "internal.kerberos.user.hive.shortname",
 "value": "hive"
 },
 {
 "name": "internal.kerberos.user.hive.groups",
 "value": "hadoop"
 },
 {
 "name": "internal.kerberos.user.jhs.name",
 "value": "jhs@EXAMPLE_HDFS.EMC.COM"
 },
 {
 "name": "internal.kerberos.user.jhs.shortname",
 "value": "mapred"
 },
 {
 "name": "internal.kerberos.user.jhs.groups",
 "value": "hadoop"
 },
 {
 "name": "internal.kerberos.user.nm.name",
 "value": "nm@EXAMPLE_HDFS.EMC.COM"
 },
 {
 "name": "internal.kerberos.user.nm.shortname",
 "value": "yarn@EXAMPLE_HDFS.EMC.COM"
 },
 {
 "name": "internal.kerberos.user.nm.groups",
 "value": "hadoop"
 },
 {
 "name": "internal.kerberos.user.nn.name",
 "value": "nn@EXAMPLE_HDFS.EMC.COM"
 },
 {
 "name": "internal.kerberos.user.nn.shortname",
 "value": "hdfs@EXAMPLE_HDFS.EMC.COM"
 },
 {
 "name": "internal.kerberos.user.nn.groups",
 "value": "hadoop,hdfs"
 },
 {
 "name": "internal.kerberos.user.oozie.name",
 "value": "oozie@EXAMPLE_HDFS.EMC.COM"
 },
 {

Secure bucket metadata example

Secure bucket metadata 213

 "name": "internal.kerberos.user.oozie.shortname",
 "value": "oozie"
 },
 {
 "name": "internal.kerberos.user.oozie.groups",
 "value": "hadoop,users"
 },
 {
 "name": "internal.kerberos.user.rm.name",
 "value": "rm@EXAMPLE_HDFS.EMC.COM"
 },
 {
 "name": "internal.kerberos.user.rm.shortname",
 "value": "yarn@EXAMPLE_HDFS.EMC.COM"
 },
 {
 "name": "internal.kerberos.user.rm.groups",
 "value": "hadoop"
 },
 {
 "name": "internal.kerberos.user.spark.name",
 "value": "spark@EXAMPLE_HDFS.EMC.COM"
 },
 {
 "name": "internal.kerberos.user.spark.shortname",
 "value": "spark"
 },
 {
 "name": "internal.kerberos.user.spark.groups",
 "value": "hadoop"
 },
 {
 "name": "internal.kerberos.user.yarn.name",
 "value": "yarn@EXAMPLE_HDFS.EMC.COM"
 },
 {
 "name": "internal.kerberos.user.yarn.shortname",
 "value": "yarn"
 },
 {
 "name": "internal.kerberos.user.yarn.groups",
 "value": "hadoop"
 },
 {
 "name": "internal.kerberos.user.zookeeper.name",
 "value": "zookeeper@EXAMPLE_HDFS.EMC.COM"
 },
 {
 "name": "internal.kerberos.user.zookeeper.shortname",
 "value": "ams"
 },
 {
 "name": "internal.kerberos.user.zookeeper.groups",
 "value": "hadoop"
 },
 {
 "name": "hadoop.proxyuser.hcat.groups",
 "value": "*"
 },
 {
 "name": "hadoop.proxyuser.hcat.hosts",
 "value": "*"
 },
 {
 "name": "hadoop.proxyuser.yarn.users",
 "value": "*"
 },
 {

Secure bucket metadata example

214 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

 "name": "hadoop.proxyuser.yarn.hosts",
 "value": "*"
 },
 {
 "name": "hadoop.proxyuser.hbase.hosts",
 "value": "*"
 },
 {
 "name": "hadoop.proxyuser.hbase.users",
 "value": "cmaurer"
 },
 {
 "name": "hadoop.proxyuser.hive.hosts",
 "value": "10.247.179.42"
 },
 {
 "name": "hadoop.proxyuser.hive.users",
 "value": "*"
 },
 {
 "name": "hadoop.proxyuser.hcat.groups",
 "value": "*"
 },
 {
 "name": "hadoop.proxyuser.hcat.hosts",
 "value": "*"
 },
 {
 "name": "dfs.permissions.supergroup",
 "value": "hdfs"
 }
]
}

Secure bucket metadata example

Secure bucket metadata 215

Secure bucket metadata example

216 Elastic Cloud Storage (ECS) 3.0 Data Access Guide

	Contents
	Figures
	Tables
	S3
	Introduction to Amazon S3 Support in ECS
	Amazon S3 API support in ECS

	S3 Supported Features
	S3 API Supported and Unsupported Features

	S3 Extensions
	S3 Extensions
	Byte range extensions
	Retention
	File system enabled

	S3 Metadata Search Extension
	Use Metadata Search
	Assign metadata index values to a bucket
	Assign metadata to objects using the S3 protocol
	Use metadata search queries
	Using Metadata Search from the ECS Java SDK
	ECS system metadata and optional attributes

	Create and Manage Secret Keys
	Create and manage secret keys
	Create a key for an object user
	Create an S3 secret key: self-service

	Authenticating with the S3 service
	Authenticating with the S3 service

	Java Client Access
	Use SDKs to access the S3 service

	OpenStack Swift
	Introduction to OpenStack Swift support in ECS
	OpenStack Swift API support in ECS

	Swift Supported Features
	OpenStack Swift supported operations

	Swift Extensions
	Swift API Extensions
	Updating a byte range within an object
	Overwriting part of an object
	Appending data to an object
	Reading multiple byte ranges within an object

	Authentication
	OpenStack Swift Authentication
	OpenStack Version 1 authentication
	OpenStack Version 2 authentication
	Authentication using ECS Keystone V3 integration

	Authorization
	Authorization on Container

	EMC Atmos
	Introduction to EMC Atmos support in ECS
	EMC Atmos API support in ECS

	Atmos Supported Features
	Supported EMC Atmos REST API Calls
	Unsupported EMC Atmos REST API Calls
	Subtenant Support in EMC Atmos REST API Calls

	Atmos API Extensions
	API Extensions

	CAS
	Setting up CAS support in ECS
	Setting up CAS support in ECS
	Cold Storage
	Compliance
	CAS retention in ECS
	Advanced retention for CAS applications: event-based retention, litigation hold, and the min/max governor
	Set up namespace retention policies
	Create and set up a bucket for a CAS user
	Set up a CAS object user
	Set up bucket ACLs for CAS
	ECS Management APIs that support CAS users
	Content Addressable Storage (CAS) SDK API support

	ECS Management API
	Introduction to the ECS Management REST API
	ECS Management REST API

	Authentication with the ECS Management Service
	Authenticate with the ECS Management REST API

	ECS Management REST API Summary
	ECS Management REST API summary

	HDFS
	What is ECS HDFS?
	What is ECS HDFS?
	Configuring Hadoop to use ECS HDFS
	ECS HDFS URI for file system access
	Hadoop authentication modes
	Migration from a simple to a Kerberos Hadoop cluster
	File system interaction
	Supported and unsupported Hadoop applications

	Create a bucket for the HDFS filesystem
	Create a bucket for HDFS using the ECS Portal
	Example Hadoop and ECS bucket permissions

	Use Hortonworks Ambari to set up Hadoop with ECS HDFS
	Deploying a Hortonworks cluster with Ambari
	Download Ambari
	Download the ECS HDFS Client Library
	Set up a local repository from which to deploy the ECS Client Library
	Install the Ambari server
	Enable the Ambari Hadoop ECS stack
	Install the Ambari Agent Manually
	Install Hadoop

	Configure ECS HDFS integration with a simple Hadoop cluster
	Configure ECS HDFS Integration with a simple Hadoop cluster
	Plan the ECS HDFS and Hadoop integration
	Obtain the ECS HDFS installation and support package
	Deploy the ECS HDFS Client Library
	Edit Hadoop core-site.xml file
	Edit HBASE hbase-site.xml
	Restart and verify access

	Configure ECS HDFS integration with a secure (Kerberized) Hadoop cluster
	Integrate secure Hadoop cluster with ECS HDFS
	Plan migration from a simple to a Kerberos cluster
	Map group names
	Configure ECS nodes with the ECS Service Principal
	Secure the ECS bucket using metadata
	Edit core-site.xml
	Restart and verify access

	Guidance on Kerberos configuration
	Guidance on Kerberos configuration
	Configure one or more new ECS nodes with the ECS Service Principal

	Troubleshooting
	Troubleshooting
	Verify AD/LDAP is correctly configured with secure Hadoop cluster
	Restart services after hbase configuration
	Pig test fails: unable to obtain Kerberos principal
	Permission denied for AD user
	Permissions errors
	Failed to process request
	Enable Kerberos client-side logging and debugging
	Debug Kerberos on the KDC
	Eliminate clock skew

	Hadoop core-site.xml properties for ECS HDFS
	Hadoop core-site.xml properties for ECS HDFS

	Secure bucket metadata example
	Secure bucket metadata

