
EMC®

Atmos™

Version 2.4

Programmer’s Guide
P/N 302-002-655
REV 01

EMC Atmos Version 2.4 Programmer’s Guide2

Copyright © 2008- 2016 EMC Corporation. All rights reserved. Published in the USA.

Published March, 2016

EMC believes the information in this publication is accurate as of its publication date. The information is subject to change without
notice.

The information in this publication is provided as is. EMC Corporation makes no representations or warranties of any kind with respect
to the information in this publication, and specifically disclaims implied warranties of merchantability or fitness for a particular
purpose. Use, copying, and distribution of any EMC software described in this publication requires an applicable software license.

EMC2, EMC, and the EMC logo are registered trademarks or trademarks of EMC Corporation in the United States and other countries.
All other trademarks used herein are the property of their respective owners.

For the most up-to-date regulatory document for your product line, go to EMC Online Support (https://support.emc.com).

EMC Corporation
Hopkinton, Massachusetts 01748-9103
1-508-435-1000 In North America 1-866-464-7381
www.EMC.com

http://support.emc.com
http://www.EMC.com

CONTENTS
Preface

Chapter 1 About the Atmos API

 Overview... 8
 System metadata .. 9
 User metadata .. 10
 Using the namespace interface ... 12
 Checksum protection .. 12
 The version object API ... 14
 Versioned objects with other Atmos features... 16
 Unicode Support... 17
 Getting better write performance... 19

Chapter 2 Getting started with the Atmos REST API

 REST commands ... 22
 Object interface examples... 22
 Namespace interface examples... 26
 Using HTML forms to create and update content.. 30
 Providing anonymous access .. 33

Chapter 3 Using Amazon S3 Applications with Atmos

 Using S3 with Atmos ... 42
 S3 Bucket configuration and performance... 45
 S3 bucket addressing.. 46

Chapter 4 Common REST Headers

 Standard HTTP headers ... 50
 Atmos custom headers ... 52

Chapter 5 REST API Reference

 Specifying objects/files in REST commands .. 66
 REST commands ... 67
 Creating an access token... 69
 Creating an object ... 71
 Creating a version ... 74
 Deleting an access token... 75
 Deleting an object... 76
 Deleting user metadata ... 77
 Deleting a version ... 80
 Downloading content anonymously... 81
 Getting access token info .. 82
 Getting an ACL .. 83
 Getting listable tags .. 85
 Getting object info .. 88
 Getting service information ... 91
EMC Atmos Version 2.4 Programmer’s Guide 3

Contents
 Getting system metadata .. 92
 Getting user metadata... 96
 Listing access tokens .. 100
 Listing objects .. 102
 Listing user metadata tags .. 109
 Listing versions... 111
 Reading an object ... 112
 Renaming a file or directory in the namespace .. 126
 Restoring a version ... 129
 Setting an ACL .. 130
 Setting user metadata... 132
 Updating an object.. 134

Chapter 6 Security

 Overview... 140
 Managing authentication .. 140
 REST authentication: securing REST messages with signatures.................. 141
 Access Control Lists .. 143

Chapter 7 Reserved Namespace for Extended Attributes

 Overview... 146
 Linux extended attributes ... 146
 Atmos extended attributes.. 146

Chapter 8 Error Messages and Status Codes

 REST information .. 154
 Error codes ... 154

Index
4 EMC Atmos Version 2.4 Programmer’s Guide

PREFACE

As part of an effort to improve its product lines, EMC periodically releases revisions of its
software and hardware. Therefore, some functions described in this document might not
be supported by all versions of the software or hardware currently in use. The product
release notes provide the most up-to-date information on product features.

Contact your EMC representative if a product does not function properly or does not
function as described in this document.

Note: This document was accurate at publication time. New versions of this document
might be released on the EMC online support website. Check the EMC online support
website to ensure that you are using the latest version of this document.

Audience
This document is part of the Atmos documentation set, and is intended for use by
developers who want to programmatically read and write data to Atmos.

Related documentation
The EMC Atmos documentation set includes the following titles:

• EMC Atmos Release Notes

• EMC Atmos Support Matrix

• EMC Atmos Administrator’s Guide

• EMC Atmos Programmer’s Guide

• EMC Atmos System Management API Guide

• EMC Atmos Security Configuration Guide

• EMC Atmos CAS Programmer’s Guide

• EMC Atmos CAS API Reference Guide

• EMC Atmos Installable File System (IFS) Installation and Upgrade Guide

• EMC Atmos Open Source License and Copyright Information

Conventions used in this document
EMC uses the following conventions for special notices:

Note: A note presents information that is important, but not hazard-related.

IMPORTANT

An important notice contains information essential to software or hardware operation.
EMC Atmos Version 2.4 Programmer’s Guide 5

Preface
Typographical conventions

EMC uses the following type style conventions in this document:

Where to get help
EMC support, product, and licensing information can be obtained as follows:

Product information - For documentation, release notes, software updates, or information
about EMC products, go to EMC Online Support at:

https://support.emc.com

Technical support - Go to EMC Online Support and click Service Center. You will see several
options for contacting EMC Technical Support. Note that to open a service request, you
must have a valid support agreement. Contact your EMC sales representative for details
about obtaining a valid support agreement or with questions about your account.

Normal Used in running (nonprocedural) text for:
• Names of interface elements, such as names of windows, dialog boxes,

buttons, fields, and menus
• Names of resources, attributes, pools, Boolean expressions, buttons,

DQL statements, keywords, clauses, environment variables, functions,
and utilities

• URLs, pathnames, filenames, directory names, computer names, links,
groups, service keys, file systems, and notifications

Bold Used in running (nonprocedural) text for names of commands, daemons,
options, programs, processes, services, applications, utilities, kernels,
notifications, system calls, and man pages

Used in procedures for:
• Names of interface elements, such as names of windows, dialog boxes,

buttons, fields, and menus
• What the user specifically selects, clicks, presses, or types

Italic Used in all text (including procedures) for:
• Full titles of publications referenced in text
• Emphasis, for example, a new term
• Variables

Courier Used for:
• System output, such as an error message or script
• URLs, complete paths, filenames, prompts, and syntax when shown

outside of running text

Courier bold Used for specific user input, such as commands

Courier italic Used in procedures for:
• Variables on the command line
• User input variables

< > Angle brackets enclose parameter or variable values supplied by the user

[] Square brackets enclose optional values

| Vertical bar indicates alternate selections — the bar means “or”

{} Braces enclose content that the user must specify, such as x or y or z

... Ellipses indicate nonessential information omitted from the example
6 EMC Atmos Version 2.4 Programmer’s Guide

http://support.emc.com

CHAPTER 1
About the Atmos API

This chapter includes the following topics:

• Overview... 8
• System metadata .. 9
• User metadata .. 10
• Using the namespace interface ... 12
• Checksum protection .. 12
• The version object API ... 14
• Unicode Support... 17
• Getting better write performance... 19
About the Atmos API 7

About the Atmos API
Overview
EMC® Atmos™is an object-storage system with enormous scalability and extensibility. It
uses metadata-driven policies to manage data placement and data services.

This guide describes the programmatic interfaces to create, read, update, and delete
objects, and to manage object metadata. The object interface and local file system
support metadata operations that include creating versions and tagging objects with
user-defined metadata (to form user-defined collections of objects). APIs are available for
REST Web services.

You can use the API to create and manipulate objects and metadata. Applications can
associate metadata with the objects they store. Metadata can be used to trigger policies
(defined by the system administrator) that meet goals for performance, data protection,
content delivery, archiving, and so on.

The Web services APIs support both an object interface and a file-system-like namespace
interface for addressing content.

In addition to the storage API, Atmos includes:

• An API for storing and accessing fixed content (information in its final form). For more
information, see the EMC Atmos CAS Programmer’s Guide and the EMC Atmos CAS
API Reference Guide.

• A system-management API that lets you implement a subset of system management
functions in client applications. For more information, see the EMC Atmos System
Management API Guide.

Atmos natively supports the Amazon Simple Storage Service (S3) API as an access method
for data operations between S3-based applications and Atmos.

EMC recommends that you follow the standard programming practice of checking the
return codes when programming with the Atmos API. Always check the return status of the
API calls and handle any errors appropriately. This is especially crucial for operations that
change the state of the data, such as write and append. If the write operation fails with an
error, it should be re-tried. A failed write operation can result in inconsistent data.

About the object interface

In the object interface:

• Atmos assigns the object a unique object ID (OID).

• The service endpoint is /rest/objects.

• If you create the object using this interface, you can access it only using the OID.

• The application layer might need to persist OIDs and perform a translation for an
application’s end users (if necessary).

• Typically a more performant and scalable interface. It does not require any special
structuring of data or applications.
8 EMC Atmos Version 2.4 Programmer’s Guide

About the Atmos API
About the namespace interface

In the namespace interface:

• The object's unique identifier is the object's pathname. Atmos also assigns it an OID.

• The service endpoint is /rest/namespace.

• The file system path provides a natural structuring of data and follows a very familiar
paradigm.

• You can use the namespace interface to transition from existing file-based
applications to web services.

• Because the object has both an OID and a namespace path, you can use either the
object interface or the namespace interface to perform reads.

• Do not use the object interface or the namespace interface interchangeably on
creates, updates, or deletes.

• Typically less performant and scalable than the object interface because the system
has to traverse a namespace to locate an object.

• Requires careful planning of the namespace layout to ensure efficient performance
and scalability. See “Namespace interface dos and don’ts” on page 12 for details.

Note: The Atmos Web Services API does not support symlinks.

System metadata
Atmos supports system metadata and user metadata (see “User metadata” on page 10).
System metadata is generated automatically and updated by the system based on a
predefined schema.

Table 1 Atmos system metadata (page 1 of 2)

Name Description Example

atime Last access time (write to data or metadata) 2007-10-29T18:19:57Z

ctime Last metadata modification time 2007-10-29T18:19:56Z

gid Group ID Apache

itime Inception (create) time 2007-10-29T18:19:57Z

mtime Last user-data modification time 2007-10-29T18:19:57Z

nlink Number of hard links to a file. This is an internal,
file-system reference count, generally not
relevant to a user application

0

objectid Atmos Object ID 4924264aa10573d4049242
81caf51f049242d810edc8
System metadata 9

About the Atmos API
User metadata
User metadata is a collection of text name-value pairs that are not validated by the
system. User metadata allows you the flexibility to create custom tags for data specific to
your applications. Atmos supports two kinds of user-defined metadata tags:

• Non-listable — Allows you to store user-defined key-value pairs.

• Listable — Also allows you to store user-defined key-value pairs, and you can
enumerate objects that have the same tag. This ability adds processing overhead that
does impact performance.

A user can store up to 127 user-metadata pairs.

Non-listable user metadata

Non-listable metadata tags (also just called metadata tags) are a way of classifying an
object. Often, metadata tags are used to trigger policies; for example, a tag-value pair of
Customer=Executive could trigger a different policy than a tag-value pair of
Customer=Sales. Talk to your system administrator to find out which metadata tag names
trigger which policies in your system. For more information about policies, see the EMC
Atmos Administrator’s Guide.

There is no restriction on user metadata name size in Atmos, but user metadata values are
restricted to 1 KB.

objname Object name (filename or directory name), for
objects created in the namespace. This is blank
if the object does not have a name.

paris
(for the directory
photos/2008/paris/)
sunset.jpg
(for the file
photos/2008/paris/sun
set.jpg)

policyname Name of the policy under which the object is
stored.

default

size Object size in bytes 2971

type String representing the data type, either
“regular” (for objects or files) or
“directory”

"regular"
— OR —
"directory"

uid User ID (the owner) user1

x-emc-wscheck
sum

String containing the checksum value and other
related information.
algorithm — Represents the hashing algorithm
used. Values can be: SHA0, SHA1, or md5
offset — Represents the offset at which the
checksum was calculated.
checksumValue — Represents the hash of the
object at the offset.

sha0/1037/87hn7kkdd9d98
2f031qwe9ab224abjd6h127
6nj9

Table 1 Atmos system metadata (page 2 of 2)

Name Description Example
10 EMC Atmos Version 2.4 Programmer’s Guide

About the Atmos API
Listable user metadata

Listable metadata tags are metadata tags that can be used to index and retrieve objects.
Listable tags are private to the user who creates them; tags created by one user cannot be
seen by another user.

For example, a user who wants to assign tags that classify the photos he took on vacation
might create tags called beach, hotel, restaurant, and so on. This tagging can be done as
part of the operations to create or update objects or set user metadata. In the file system,
listable tags show up as directories containing symbolic links to the actual objects.

The same object can be tagged with multiple names; this is how tags differ from
containers, as an object can belong to only one container. There can be a hierarchy of
listable metadata tags. For example, a listable metadata tag specification of
vacation/2008/paris creates a hierarchy of directories in the file system: paris is a
subdirectory of 2008, and 2008 is a subdirectory of vacation. The symbolic link to the
object is under paris.

Listable tags provide a mechanism for easy indexing, searching, and retrieval of objects.
For example, a user might have 2008 vacation pictures in two listable directories,
vacation/2008/paris and vacation/2008/china. Then, he can easily retrieve a list of all
pictures from his 2008 China vacation by issuing a ListObjects operation and specifying
vacation/2008/china as the input parameter.

As another example, suppose we have a tag pair of location=boston for a new object,
and we make the location tag listable. Then, if we perform a ListObjects operation with
the tag argument specified as location, the object is returned in the response. If we
remove location as a listable tag for the object, when we do a ListObjects request with
the tag argument specified as location, the object is not returned.

As with non-listable user metadata, there is no restriction on listable user metadata name
size in Atmos, but user metadata values are restricted to 1 KB.

Object tagging guidelines

For listable tags:

• Use listable tags carefully and only when necessary.

• Limit the number of unique tags to 50,000.

• A single tag can be associated with a maximum of 6.5 million objects. For applications
where more than 6.5 million objects are desired, maximize the number of objects by
using multiple tags in a round robin methodology as a single tag. For example, for a
listable tag “Application tag=<tag value>”, use hashed application tags as follows:

Application_1 = <tag value> for the first 6,500,000 objects
Application_2 = <tag value> for the second 6.500,000 objects
…
Application_n = <tag value> for the nth 6,500,000 objects

• Do not create a deeply nested hierarchy of listable tags.
User metadata 11

About the Atmos API
Using the namespace interface
• Atmos web services allow you to assign a filename to an object when creating the

object. This enables clients to use their own name when referring to an object
(filename), rather than an object ID that Atmos assigns to the object.

• Directly under the / directory, you can create only directories, not files. While creating
a file, if you refer to a directory that does not exist, it is created automatically.

• For information about constructing commands to specify files instead of objects, see
“Specifying objects/files in REST commands” on page 66.

• Examples of using the namespace interface for each operation are in Chapter 5 and
Chapter 7.

Namespace interface dos and don’ts

To ensure that the namespace interface performs efficiently, plan the namespace
according to these rules:

• Design a well-balanced directory structure.

• Design the directory structure so that the directory tree has breadth. The top 2
levels of the directory structure should have tens to hundreds of directories.

• Do not design the directory structure to be narrow and deep.

• Limit the number of objects in each directory or subdirectory to 100,000 or less.

• Create objects in the Atmos location where they will be accessed most often for
update.

Checksum protection
Atmos supports end-to-end SHA-0, SHA-1, md5 checksum protection for objects created
with the REST interface that are stored in replicas that use GeoParity. For objects not
stored in GeoParity replicas, Atmos uses checksum to ensure the data was not corrupted
during HTTP transit.

Atmos requires that you use checksum protection for applications that must conform to
SEC 17a-4f standards.

To invoke checksum protection on a create or update request include the
x-emc-wschecksum custom header. The x-emc-checksum header includes:

x-emc-wschecksum: algorithm/offset/checksumValue

Where:

• algorithm — Is set to SHA0, SHA1, or md5.

• offset — Specifies the offset where the algorithm was calculated.

• checksumValue — Specifies the hash of the object to create or update.

On a create request, you must pass in the checksum value for the complete object. The
data flow for an object create request that includes the checksum header is as follows:
12 EMC Atmos Version 2.4 Programmer’s Guide

About the Atmos API
1. A web services application invokes a create request passing in the x-emc-wschecksum
custom header.

2. The Atmos web services node validates the checksum, and if it is valid, it uses the
client API to request the appropriate storage services operations on the object create
request. If the checksum does not validate with the request header, Atmos rejects the
request.

3. The Atmos storage services writes the new object/fragment to the drives.

4. Atmos returns the success/failure response to the web services application.

You can obtain the checksum value for an object by performing a read operation (using the
GET or HEAD HTTP methods) or a Get System Metadata request. The x-emc-wschecksum
header is returned in the response.

For more information about checksum operations, see:

• “x-emc-wschecksum”

• “Creating an object”

• “Updating an object”

• “Getting system metadata”

Checksum and system metadata

When an Atmos object is successfully created with a checksum value, Atmos creates
checksum metadata for the object. The checksum metadata includes:

x-maui-wschecksum =
Algorithm/Offset/LibraryName/LibraryVersion/ChecksumValue/Context

Where:

• Algorithm — The name of the hashing algorithm (SHA0, SHA1, or md5).

• Offset — The offset at which the checksum was computed.

• LibraryName — The name of the library used to compute the checksum.

• LibraryVersion — The version of the library used to compute the checksum.

• ChecksumValue — The hash value for the object at the Offset specified above.

• Context — The serialized context at the offset. This allows the checksum computation
to be resumed at the offset.

By including the offset and context in the metadata, Atmos enables applications to
resume failed uploads from the point of failure instead of uploading the entire object from
the beginning.

If you have an object create or update that fails, you can:

• Issue a HEAD request on the object that failed to upload completely.

• The server returns x-emc-wschecksum header with a value containing the
algorithm/offset/checksumValue.

• Your application can then resume the upload (with checksum validation) from this
offset instead of from the beginning.
Checksum protection 13

About the Atmos API
The version object API
The Atmos version object API lets you easily create and manage immutable snapshots of
Atmos objects. The object you copy is called the top-level object, and the copy is called
the versioned object.

• You can use versioned objects to:

• Recover a top-level object (in case of accidental deletions or updates).

• Audit changes to an object over time.

An Atmos versioned object is a point-in-time copy that includes the object’s data and
metadata. The policy applied to the top-level object applies to the versioned object
(except for retention or expiration rules.)

When creating versions, Atmos performs a full-range copy-on-write. So if your application:

• Creates one 10MB top-level object and a versioned object. At this time, the versioned
object will point to the same data as the top-level object.

• Replaces 1MB of data on the top-level object and creates another versioned object.
This versioned object will point to the copied data, which contains the full 10M not
just the 1MB difference.

Versioning large objects (those greater than 5GB) might impact system performance
depending on your specific performance requirements and the system’s overall load.

Once the version is created, it is not affected by changes (including policy changes) to the
top-level object. The top-level object is always available for changes. Versioning
operations are applied to one object at a time.
14 EMC Atmos Version 2.4 Programmer’s Guide

About the Atmos API
Figure 1 illustrates how a versioned object is created.

Figure 1 Create versioned object lifecycle

• The user stores a word document as an Atmos object (a top-level object) using the
standard object API. It gets an object ID to uniquely identify it, and it has metadata
associated with it.

• The user wants a snapshot of the top-level object. To create it, they use the version API
create operation (HTTP POST with the /rest/objects/<ObjectID>?versions URI.) Atmos
creates an exact copy of the top-level object and the object’s metadata. Atmos gives it
a unique object ID, and applies the same policy to the copy as it applied to the
top-level object.

• The user modifies the top-level object. No changes are made to the version, and no
new version is created.

• The user modifies the top-level object, and wants a snapshot of the updated object.
They call the version API create again. Atmos creates the versioned object (with
metadata), and applies the policy to that object.
The version object API 15

About the Atmos API
The version object API includes the operations described in Table 2.

You can version objects in the namespace, but you must reference those objects using the
object’s OID. You cannot reference them using the namespace path.

Versioned objects with other Atmos features
Table 3 describes how versioned objects work with other Atmos features.

Restrictions

You can version:

• Top-level objects.

• You cannot create a version of a directory, and you cannot create a version of a
versioned object.

• An object by object ID.

• You can version objects in the namespace, but you must reference them by object ID,
and not by the namespace path.

Table 2 Atmos Version Object API Operations

Operation Description

Create Creates a snapshot of the top-level object and returns the object ID
for the version. Any subsequent operations (list, delete, restore, get)
for the specific version must reference this Object ID.

Delete Deletes a specific version of the object, and returns capacity to the
system upon successful completion of the delete.

List Enumerates the versions (by Object ID) for the named top-level
object. The list is sorted by date. To paginate the results, use the
x-emc-token and x-emc-limit headers.

Read To retrieve the contents of a versioned object, use the standard
object API, passing in the OID of the version you want to retrieve.

Restore Reverts the top-level object to the specified point-in-time copy.

Update You cannot modify a versioned object. To update the top-level object,
use the standard API to perform any updates to the top-level object.

Table 3 Versioning and Atmos Feature Interaction

Atmos Feature Description

Policy The policy applied to the top-level object is also applied to the versioned
object except for retention or expiration rules.

Replica types You can create versioned objects when any of the following replicas are
defined for the top-level objects: synchronous, asynchronous, striping,
GeoParity, compressed and deduplicated.

Security/ACLs A versioned object is owned by the same UID and is assigned the same
ACLs as the top-level object from which it was created.
16 EMC Atmos Version 2.4 Programmer’s Guide

About the Atmos API
You cannot:

• Group objects in collections for version management.

• Manage versions using the standard Atmos API, you must use the version API.

• Use the version feature for consistency groups.

• Use object versioning to provide added data durability or disaster recovery.

Unicode Support
By default, the Atmos REST API uses UTF-8 encoding for Unicode characters, however, the
HTTP standard supports only Latin-1 characters in HTTP headers. To support Unicode
characters in data sent via an HTTP header, Atmos requires that you use the “x-emc-utf8”
header, and percent-encode the Unicode data by following these rules:

• Requests — When sending requests that include Unicode characters in headers (such
as metadata names or values), percent-encode the Unicode values and pass the
x-emc-utf8:true header on the request so that Atmos knows to unencode the
characters before it performs any processing. For example, to set the listable
metadata to περιοχή=βόρεια (region=north), the request would look like this:

x-emc-listable-meta:
%CF%80%CE%B5%CF%81%CE%B9%CE%BF%CF%87%CE%AE=%CE%B2%CF%8C%CF%81%CE%B5
%CE%B9%CE%B1

• Responses — Atmos will percent-encode Unicode characters on responses when
x-emc-utf8:true is included in the request. The clients that receive the data must then
unencode the data. For example, a response to a get user metadata request that
includes x-emc-utf8:true will send "key1" and "val one" as "key1=val%20one".

• Object names — You can use Unicode characters when naming Atmos objects. Atmos
accepts percent-encoded utf8 names. For example, the request to create the object
named “images/υπολογιστή.jpg” would look like:

POST
/rest/namespace/images/%CF%85%CF%80%CE%BF%CE%BB%CE%BF%CE%B3%CE%B9%C
F%83%CF%84%CE%AE.jpg HTTP/1.1

• Signatures — When the client generates the signature, and x-emc-utf8 is being used, it
should use the encoded version for each applicable header, for example, use
"my%20value" instead of "my value"

• Characters to separate metadata entries — The equal character '=' and comma ',' that
separate metadata entries should not be encoded. For example:
key1=val%20one,key2=val%20two

• Atmos will only encode/unencode characters when the request includes the
“x-emc-utf8” header and it is set to true. If the “x-emc-utf8” header is not included (or
if it is set to false), Atmos will not perform any encoding/unencoding of characters,
and will return specific errors.
Unicode Support 17

About the Atmos API
The following operations pass data (such as, metadata tag names) and thus might require
the use of the “x-emc-utf8” header:

• “Renaming a file or directory in the namespace”

• “Getting system metadata”/“Getting user metadata”

• “Setting user metadata”

• “Listing objects”

• “Listing user metadata tags”

• “Getting listable tags”

• “Creating an object”, “Reading an object”, and “Updating an object”

Note: All metadata name/values will be percent-encoded, whether or not their encodings
represent non-ASCII characters. For example, the space character is a character normally
included in percent-encoding, so will be encoded by Atmos.

You can use the “Getting service information” operation to determine if the current version
of Atmos supports the x-emc-utf8 header.

Contact your service provider to determine if your service provider supports Unicode
characters.

Percent Encoding

To encode a value, you first convert it to the corresponding utf8 byte string, then
percent-encode the utf8 encoded value. Percent-encoding represents each byte in the
value as a pair of hexadecimal digits, preceded by the '%' symbol.

For example, υπολογιστή would be encoded as:

"%CF%85%CF%80%CE%BF%CE%BB%CE%BF%CE%B3%CE%B9%CF%83%CF%84%CE%AE"

Table 4 describes how each character is encoded.

Table 4 Example for each character (page 1 of 2)

Character Unicode point Hexadecimal Name

υ U+03C5 %CF%85 GREEK SMALL LETTER UPSILON

π U+03C0 %CF%80 GREEK SMALL LETTER PI

ο U+03BF %CE%BF GREEK SMALL LETTER OMICRON

λ U+03BB %CE%BB GREEK SMALL LETTER LAMDA

ο U+03BF %CE%BF GREEK SMALL LETTER OMICRON

γ U+03B3 %CE%B3 GREEK SMALL LETTER GAMMA

ι U+03B9 %CE%B9 GREEK SMALL LETTER IOTA
18 EMC Atmos Version 2.4 Programmer’s Guide

About the Atmos API
Getting better write performance
To get the best possible performance:

• Write as many objects in parallel as possible.

• Use only one request per object for creates and updates. Concurrent access to the
same object (on writes) may lead to locking or serialization overhead.

• Use the Expect: 100-continue request header when creating or updating namespace
objects. This technique is especially useful when using the namespace to create or
update data because oftentimes the filename will already exist. By using the expect
header, the requesting application can avoid sending data when it would fail. Here’s
how it works:

1. The application requesting the create/update sends the expect: 100-continue
header in the request, along with the other normal request headers. But they do
not send any data.

2. The system receives the request, validates the headers, and checks to see if an
object with that name exists.

3. If everything is ok, the system sends back the 100-continue response.

4. If there is an error, (for example the signature is invalid or the object name already
exists) the system sends back the normal error response, and the application
never sends the request body.

5. The application will only send data if it gets the 100-continue header back.

σ U+03C3 %CF%83 GREEK SMALL LETTER SIGMA

τ U+03C4 %CF%84 GREEK SMALL LETTER TAU

ή U+03AE %CE%AE GREEK SMALL LETTER ETA WITH TONOS

Table 4 Example for each character (page 2 of 2)

Character Unicode point Hexadecimal Name
Getting better write performance 19

About the Atmos API
20 EMC Atmos Version 2.4 Programmer’s Guide

CHAPTER 2
Getting started with the Atmos REST API

This chapter includes examples for using the REST API. It includes the following topics:

• REST commands ... 22
• Object interface examples... 22
• Namespace interface examples... 26
• Using HTML forms to create and update content.. 30
• Providing anonymous access .. 33
Getting started with the Atmos REST API 21

Getting started with the Atmos REST API
REST commands
Atmos supports the following HTTP methods:

• POST — Creates objects and sets user metadata and ACLs for specified objects.

• GET — Retrieves object data, including metadata and ACLs.

• HEAD — Corresponds to each GET method. HEAD looks exactly like a GET request
except the method name is HEAD instead of GET.

The response for a HEAD request includes only headers; it does not include a
response body. This is useful for ReadObject requests to retrieve the object's user
metadata, system metadata, and access-control list but not the object itself.

• PUT — Updates object attributes.

• DELETE — Removes objects and metadata from the system.

Applications written using the Atmos REST API must be coded to handle HTTP1.1
responses. For example, if a request results in Atmos returning a message length greater
than 1MB, Atmos uses the Transfer-Encoding:chunked header instead of the
Content-Length header.

Object interface examples
This section includes the following object interface examples:

• “Example: Creating an object”

• “Example: Creating an object with non-listable user metadata”

• “Example: Setting (non-listable) user metadata”

• “Example: Creating an object with listable metadata tags”

• “Example: Setting listable metadata tags”

Example: Creating an object

The following example shows how to create an object. (Throughout this chapter, the line
numbers are not part of the examples. They are included to clarify the discussion.)

1 POST /rest/objects HTTP/1.1
2 accept: */*
3 x-emc-useracl: john=FULL_CONTROL,mary=READ
4 date: Wed, 18 Feb 2009 16:03:52 GMT
5 content-type: application/octet-stream
6 x-emc-date: Wed, 18 Feb 2009 16:03:52 GMT
7 x-emc-groupacl: other=NONE
8 host: 168.159.116.96
9 content-length: 211
10 x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1
11 x-emc-signature: KpT+3Ini1W+CS6YwJEAWYWvIlIs=
22 EMC Atmos Version 2.4 Programmer’s Guide

Getting started with the Atmos REST API
Each line of the example is explained briefly in the table following the example, along with
a reference to other sections to obtain more detail.

Line # Description See...

1 Identifies the command and, where
needed, the object being acted on. In
this line, /rest/objects indicates an
object is being referenced; alternately,
you can specify a filename.

“Specifying objects/files in REST
commands” on page 66

2 Standard HTTP header. N/A

3 Sets access rights to the object for the
specified user IDs (UIDs). In this case,
Mary is granted read access and John is
granted full access (read and write).

Chapter 4, “Common REST Headers”

4 Specifies the date in UTC format, as
defined in RFC 2616, section 3.3.1.
Dates are used to (1) check whether a
request is valid within the Web server's
validity time window, and (2) compute
signatures.

Chapter 4, “Common REST Headers”

5 Specifies the type of object being
stored.

Chapter 4, “Common REST Headers”

6 Specifies the date in UTC format, as
defined in RFC 2616, section 3.3.1.
Dates are used to (1) check whether a
request is valid within the Web server's
validity time window, and (2) compute
signatures.

Chapter 4, “Common REST Headers”

7 Sets access rights to the object ID for
the user group.

Chapter 4, “Common REST Headers”

8 Standard HTTP header specifying the
server that is the recipient of this
request.

N/A

9 Standard HTTP header specifying the
length of the request/response body, in
bytes.

Chapter 4, “Common REST Headers”

10 Specifies the UID of an application that
is consuming the REST API and the ID of
the subtenant to which that UID
belongs. The format is
subtenant-ID/application-ID.

Chapter 4, “Common REST Headers”

11 Specifies the signature, which is a
means for the system to authenticate
the UID making the request.

Chapter 4, “Common REST Headers”
and “Managing authentication” on
page 140
Object interface examples 23

Getting started with the Atmos REST API
Example: Creating an object with non-listable user metadata

This example builds on the one in “Object interface examples” on page 22, with the
addition of a line (in boldface) that define non-listable metadata tags:

1 POST /rest/objects HTTP/1.1
2 x-emc-meta: part1=buy
3 accept: */*
4 x-emc-useracl: john=FULL_CONTROL,mary=READ
5 date: Wed, 18 Feb 2009 16:03:52 GMT
6 content-type: application/octet-stream
7 x-emc-date: Wed, 18 Feb 2009 16:03:52 GMT
8 x-emc-groupacl: other=NONE
9 host: 168.159.116.96
10 content-length: 211
11 x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1
12 x-emc-signature: KpT+3Ini1W+CS6YwJEAWYWvIlIs=

Example: Setting (non-listable) user metadata

In the following example, the x-emc-meta header specifies a non-listable user metadata
tag for an already existing object (specified by the object ID on the first line):

POST
/rest/objects/499ad542a1a8bc200499ad5a6b05580499c3168560a4?metadata/
user HTTP/1.1
x-emc-meta: part1=order
accept: */*
date: Wed, 18 Feb 2009 16:27:24 GMT
content-type: application/octet-stream
x-emc-date: Wed, 18 Feb 2009 16:27:24 GMT
host: 168.159.116.96
x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1
x-emc-signature: OLI2TcDNWQ29gZv+ONr1ufCKA9M=

Line # Description See...

2 Sets the value of non-listable metadata tags. This
might be used to trigger a policy. For example, a
policy might treat the data for a certain type of
customer in a specific way.
In this case, the object being created is given a
metadata tag named part1, with a value of buy.

Chapter 4, “Common REST
Headers”
“Non-listable user metadata”
on page 10
24 EMC Atmos Version 2.4 Programmer’s Guide

Getting started with the Atmos REST API
Example: Creating an object with listable metadata tags

This example builds on the one in “Example: Creating an object with non-listable user
metadata” on page 24, with the addition of a line (in boldface) that define listable
metadata tags:

1 POST /rest/objects HTTP/1.1
2 x-emc-listable-meta: part4/part7/part8=quick
3 x-emc-meta: part1=buy
4 accept: */*
5 x-emc-useracl: john=FULL_CONTROL,mary=READ
6 date: Wed, 18 Feb 2009 16:03:52 GMT
7 content-type: application/octet-stream
8 x-emc-date: Wed, 18 Feb 2009 16:03:52 GMT
9 x-emc-groupacl: other=NONE
10 host: 168.159.116.96
11 content-length: 211
12 x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1
13 x-emc-signature: KpT+3Ini1W+CS6YwJEAWYWvIlIs=

Example: Setting listable metadata tags

This example builds on the one in “Example: Setting (non-listable) user metadata” on
page 24, with the addition of a line (in boldface) that defines a listable user-metadata tag:

POST
/rest/objects/499ad542a1a8bc200499ad5a6b05580499c3168560a4?metadata
/user HTTP/1.1
x-emc-listable-meta: part3=fast
x-emc-meta: part1=order
accept: */*
date: Wed, 18 Feb 2009 16:27:24 GMT
content-type: application/octet-stream
x-emc-date: Wed, 18 Feb 2009 16:27:24 GMT
host: 168.159.116.96
x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1
x-emc-signature: OLI2TcDNWQ29gZv+ONr1ufCKA9M=

Line # Description See...

2 Sets the value of listable metadata tags.
In this example, in the file system,
part8 is a subdirectory of part7, and
part7 is a subdirectory of part4. A
symbolic link to the object, named
quick, is under part8.

Chapter 4, “Common REST Headers”
and
“Listable user metadata” on page 11
Object interface examples 25

Getting started with the Atmos REST API
Namespace interface examples
• “Example: Creating a directory”

• “Example: Creating a file in a directory”

• “Example: Listing a directory”

• “Example: Reading a file”

• “Example: Reading part of a file”

• “Example: Updating a file”

Example: Creating a directory

To create a directory, you must use the namespace interface. When specifying the object’s
name, a trailing slash (/) identifies it as a directory (for example, mydirectory/).

Request
POST /rest/namespace/mydirectory/ HTTP/1.1

accept: */*
date: Mon, 03 Aug 2009 13:30:13 GMT
content-type: application/octet-stream
x-emc-date: Mon, 03 Aug 2009 13:30:13 GMT
host: 168.159.116.96
x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1
x-emc-signature: Qfq/rwMcQh74Pl8W4JkyTJiPZW4=

Response
HTTP/1.1 201 Created

Date: Mon, 03 Aug 2009 13:30:13 GMT
Server: Apache
location:
/rest/objects/4a3fd8dfa2a8482004a3fd9315cf4704a76e665d80be
x-emc-delta: 0
x-emc-policy:
Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8

Example: Creating a file in a directory

To create a file in a directory, include the parent directory's name in the namespace
request (below, mydirectory/samplefile).

If any intermediate directories do not exist, they are created automatically.

Request
POST /rest/namespace/mydirectory/samplefile HTTP/1.1

accept: */*
date: Mon, 03 Aug 2009 13:32:34 GMT
content-type: application/octet-stream
x-emc-date: Mon, 03 Aug 2009 13:32:34 GMT
host: 168.159.116.96
content-length: 27
x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1
x-emc-signature: onk0Z8dvgqxKk6wDhlDznKrZqfM=
content for this file
26 EMC Atmos Version 2.4 Programmer’s Guide

Getting started with the Atmos REST API
Response
HTTP/1.1 201 Created

Date: Mon, 03 Aug 2009 13:32:34 GMT
Server: Apache
location:
/rest/objects/4a3fd8dfa2a8482004a3fd9315cf4704a76e6f2f1072
x-emc-delta: 27
x-emc-policy: default
Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8

Example: Listing a directory

A ReadObject call on a directory returns a list of the directory's children (files and
subdirectories).

Request
GET /rest/namespace/mydirectory HTTP/1.1

accept: */*
date: Mon, 03 Aug 2009 13:33:38 GMT
content-type: application/octet-stream
x-emc-date: Mon, 03 Aug 2009 13:33:38 GMT
host: 168.159.116.96
x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1
x-emc-signature: 6owPphyncgDRLkpZ8okLerzabzM=

Response
HTTP/1.1 200 OK

Date: Mon, 03 Aug 2009 13:33:38 GMT
Server: Apache
x-emc-policy: _int
Content-Length: 327
x-emc-groupacl: other=NONE
x-emc-useracl: user1=FULL_CONTROL
x-emc-meta: atime=2009-08-03T13:30:13Z, mtime=2009-08-03T13:32:34Z,
ctime=2009-08-03T13:32:34Z, itime=2009-08-03T13:30:13Z,
type=directory, uid=user1, gid=apache,
objectid=4a3fd8dfa2a8482004a3fd9315cf4704a76e665d80be,
objname=mydirectory, size=4096, nlink=1, policyname=default
Connection: close
Content-Type: text/xml

<?xml version='1.0' encoding='UTF-8'?>
<ListDirectoryResponse xmlns='http://www.emc.com/cos/'>
<DirectoryList>
<DirectoryEntry>

<ObjectID>4a3fd8dfa2a8482004a3fd9315cf4704a76e6f2f1072</ObjectID>
 <FileType>regular</FileType>
 <Filename>samplefile</Filename>
</DirectoryEntry>
</DirectoryList>
</ListDirectoryResponse>
Namespace interface examples 27

Getting started with the Atmos REST API
Example: Reading a file

To read a file, use the Read Object operation, specifying the name of the file.

Request
GET /rest/namespace/mydirectory/samplefile HTTP/1.1

accept: */*
date: Mon, 03 Aug 2009 13:34:38 GMT
content-type: application/octet-stream
x-emc-date: Mon, 03 Aug 2009 13:34:38 GMT
host: 168.159.116.96
x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1
x-emc-signature: Tg2VUWnBQ9daW5OZafBOltBc7Vw=

Response
HTTP/1.1 200 OK

Date: Mon, 03 Aug 2009 13:34:38 GMT
Server: Apache
x-emc-policy: default
Content-Length: 27
x-emc-groupacl: other=NONE
x-emc-useracl: user1=FULL_CONTROL
x-emc-meta: atime=2009-08-03T13:32:35Z, mtime=2009-08-03T13:32:35Z,
ctime=2009-08-03T13:32:35Z, itime=2009-08-03T13:32:34Z,
type=regular, uid=user1, gid=apache,
objectid=4a3fd8dfa2a8482004a3fd9315cf4704a76e6f2f1072,
objname=samplefile, size=27, nlink=1, policyname=default
Connection: close
Content-Type: application/octet-stream

content for this file

Example: Reading part of a file

To read part of a file, use the Read Object method with the Range request header. In the
example below, the request is for 11 bytes (bytes 5-15).

Request
GET /rest/namespace/mydirectory/samplefile HTTP/1.1

accept: */*
date: Mon, 03 Aug 2009 13:35:11 GMT
content-type: application/octet-stream
x-emc-date: Mon, 03 Aug 2009 13:35:11 GMT
range: Bytes=5-15
host: 168.159.116.96
x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1
x-emc-signature: vv7reSLatse4u7WxoO7FPSjJCpY=
28 EMC Atmos Version 2.4 Programmer’s Guide

Getting started with the Atmos REST API
Response
HTTP/1.1 206 Partial Content

Date: Mon, 03 Aug 2009 13:35:11 GMT
Server: Apache
x-emc-policy: default
Content-Length: 11
Content-Range: bytes 5-15/27
x-emc-groupacl: other=NONE
x-emc-useracl: user1=FULL_CONTROL
x-emc-meta: atime=2009-08-03T13:32:35Z, mtime=2009-08-03T13:32:35Z,
ctime=2009-08-03T13:32:35Z, itime=2009-08-03T13:32:34Z,
type=regular, uid=user1, gid=apache,
objectid=4a3fd8dfa2a8482004a3fd9315cf4704a76e6f2f1072,
objname=samplefile, size=27, nlink=1, policyname=default
Connection: close
Content-Type: application/octet-stream

content for

Example: Updating a file

Request
PUT /rest/namespace/mydirectory/samplefile HTTP/1.1

accept: */*
date: Mon, 03 Aug 2009 13:36:41 GMT
content-type: application/octet-stream
x-emc-date: Mon, 03 Aug 2009 13:36:41 GMT
host: 168.159.116.96
content-length: 18
x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1
x-emc-signature: 0KL4MpDj/hI8ZGRnEOL2+1MdA5k=

different content

Response
HTTP/1.1 200 OK

Date: Mon, 03 Aug 2009 13:36:41 GMT
Server: Apache
x-emc-delta: -9
x-emc-policy: default
Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8
Namespace interface examples 29

Getting started with the Atmos REST API
Using HTML forms to create and update content
Atmos provides the ability to upload binary content by using HTML forms. The HTML form
must include the elements as described in Table 5. If the form includes the set of required
elements, Atmos translates the HTML form into a standard REST request, and it treats the
form fields as REST headers.

If the form does not meet the requirements, Atmos treats the request as though it were a
request to upload multipart/form-data.

Table 5 Form element requirements (page 1 of 2)

Element Name Required Requirement/Description

Form action Yes Set to the Atmos endpoint URI for a POST (create) or PUT (update)
request.
If you specify a value for the x-http-method-override header, then
Atmos transforms this URI to the URI appropriate to the HTTP operation
specified.

method Yes Set to POST.

enctype Yes Set to multipart/form-data.

Form fields x-emc-uid Yes If a field of this name is not present, then Atmos assumes that the
object is actually multipart/form-data and does not perform the other
processing described above. For example:
<input type="hidden" name="x-emc-uid"
value="6039ac182f194e15b9261d73ce044939/user1"></input>

x-emc-date Yes This field is required by Atmos for all REST operations. For example:
<input type="hidden" name="x-emc-date" value="Thu, 05
Jun 2008 16:38:19 GMT"></input>

x-emc-signature Yes This field is required by Atmos for all REST operations. Calculate the
signature for HTML forms in the same way as you do for any Atmos
requests, and store them in a form field of this name. For example:
<input type="hidden" name="x-emc-signature"
value="WHJo1MFevMnK4jCthJ974L3YHoo="></input>

x-http-method-override Optional Use this field to change the HTTP request verb from POST to PUT if you
want to perform an update and not a create. For example:
<input type="hidden" name="x-http-method-override"
value="PUT"></input>
30 EMC Atmos Version 2.4 Programmer’s Guide

Getting started with the Atmos REST API
Sample form

This example shows how Atmos processes an HTML form that meets the form
requirements described in Table 5:

<form action="http://10.5.116.244/rest/objects" method="POST" enctype="multipart/form-data">
<input type="hidden" name="x-emc-uid" value="6039ac182f194e15b9261d73ce044939/user1"></input>
<input type="hidden" name="x-emc-date" value="Thu, 05 Jun 2008 16:38:19 GMT"></input>
<input type="hidden" name="x-emc-signature" value="WHJo1MFevMnK4jCthJ974L3YHoo="></input>
<input type="hidden" name="x-emc-meta" value="part1=buy"></input>
<input type="file" name="data"></input>
<input type= "submit"></input>
</form>

The resulting POST would look like this:

POST /rest/objects HTTP/1.1
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,

application/x-shockwave-flash, application/xaml+xml,
application/vnd.ms-xpsdocument, application/x-ms-xbap,
application/x-ms-application, */*

Accept-Language: en-us
Content-Type: multipart/form-data;

boundary=---------------------------7db212f1101d8

x-http-inject-response
-headers

Optional When set to true, the response code and any response headers are
injected into the response body.
The format of this response is one line that contains the length of the
headers (integer) followed by HTTP status line and any HTTP headers.
For example:
128
HTTP 201 Created
Content-Length: 0
Location:
/rest/objects/4d773b6ca10574f404d773bd3bedfc04d77669324
3b8
x-emc-policy: default
x-emc-delta: 502323

Note: After this block, the response body, if any, will be sent.

x-emc-xxx Optional Where xxx represents a valid Atmos custom header. For example, to set
the x-emc-meta header:
<input type="hidden" name="x-emc-meta"
value="part1=buy"></input>

input type = file name
=data

Required This must be the last element in the form.
• When input type = file and name = data, the data is streamed as the

body of the request. If the name does not = data, an HTTP 400 is
returned.

• When this form field is encountered, it is assumed that from this
point until the end of the request (except for the last boundary) is
the content to upload.

• The request's Content-Length is modified to this new size.
• If this is not true, the Content-Length is incorrect and the Atmos

operation fails.
• The Content-Type of this field override the request's Content-Type.
• The file’s encoding must be: Content-Transfer-Encoding: binary.

Base-64 is not supported.
For example:
<input type="file" name="data"></input>

Table 5 Form element requirements (page 2 of 2)

Element Name Required Requirement/Description
Using HTML forms to create and update content 31

Getting started with the Atmos REST API
UA-CPU: x86
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; .NET

CLR 1.1.4322; .NET CLR 2.0.50727; .NET CLR 3.0.04506.30; .NET CLR
3.0.04506.648; .NET CLR 3.0.4506.2152; .NET CLR 3.5.30729; MS-RTC LM
8)

Host: lciga093.lss.emc.com
Content-Length: 306677
Connection: Keep-Alive
Cache-Control: no-cache

-----------------------------7db212f1101d8
Content-Disposition: form-data; name="x-http-method-override"

PUT
-----------------------------7db212f1101d8
Content-Disposition: form-data; name="x-emc-uid"

6039ac182f194e15b9261d73ce044939/user1
-----------------------------7db212f1101d8
Content-Disposition: form-data; name="x-emc-date"

Thu, 05 Jun 2008 16:38:19 GMT
-----------------------------7db212f1101d8
Content-Disposition: form-data; name="x-emc-signature"

WHJo1MFevMnK4jCthJ974L3YHoo=
-----------------------------7db212f1101d8
Content-Disposition: form-data; name="x-emc-meta"

part1=buy
-----------------------------7db212f1101d8
Content-Disposition: form-data; name="data";

filename="Z:\cwikj\iomega\atmosAppSet_1.0_armel.tgz"
Content-Type: application/x-gzip-compressed

<<<file data>>>

Because the request meets the requirements for an HTML form upload, Atmos processes
the request as:

PUT /rest/objects/ HTTP/1.1
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,

application/x-shockwave-flash, application/xaml+xml,
application/vnd.ms-xpsdocument, application/x-ms-xbap,
application/x-ms-application, */*

Accept-Language: en-us
Content-Type: multipart/form-data
UA-CPU: x86
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; .NET

CLR 1.1.4322; .NET CLR 2.0.50727; .NET CLR 3.0.04506.30; .NET CLR
3.0.04506.648; .NET CLR 3.0.4506.2152; .NET CLR 3.5.30729; MS-RTC LM
8)

Host: lciga093.lss.emc.com
Content-Length: 305821
Connection: Keep-Alive
Cache-Control: no-cache
X-Emc-Uid: 6039ac182f194e15b9261d73ce044939/user1
X-Emc-Date: Thu, 05 Jun 2008 16:38:19 GMT
X-Emc-Signature: WHJo1MFevMnK4jCthJ974L3YHoo=
X-Emc-Meta: part1=buy

<<file data>>
32 EMC Atmos Version 2.4 Programmer’s Guide

Getting started with the Atmos REST API
In the processed request, note that:

• The Content-Type was adjusted to "multipart/form-data".

• The Content-Length was adjusted to the real content length of the file.

Limits/Restrictions/Recommendations

• A POST or PUT request can include a single upload.

• The file element must be the last element in the form.

• EMC recommends that you use the x-http-inject-response-headers so that response
headers are injected into the body content of the response. If you do not use this
header, you are not able to read response headers from HTML form POST operations.

• For error responses less than 512 bytes, Atmos might pad the response so that the
friendly, but uninformative error page used by some browsers is not substituted.

• Atmos might set the "X-Content-Type-Options" response header to "nosniff" to prevent
browsers from preemptively changing the content type. For example, if you attempted
to upload a file named mypic.gif, some browsers would interpret the response as an
image, and try to render it.

• Atmos detects requests from Internet Explorer, and automatically sets an "Expires: 0"
response header to prevent caching.

• Form fields are not required to be input type = hidden (as shown in the examples), but
they must contain valid values. The hidden input type is useful for preventing users
from tampering with these values.

Providing anonymous access
You can let non-authenticated users to upload data to or download data from Atmos by:

• “Using shareable URLs”— Allows anonymous users to download of one file/object.
The URL expires at a predetermined time.

• “Using access tokens for anonymous upload and download” — Allows anonymous
users to upload or download one file/object as defined by an access token.

Using shareable URLs

Atmos lets you provide a non-Atmos user with a pre-constructed, pre-authenticated URL
that lets them download a specific object. The entire object/file is read.

The URL has the following syntax:

http://MyAtmosServer/location?uid=uid&expires=expires&signature=signature&disposition=attachm
ent&filename=”myfile.txt”
Providing anonymous access 33

Getting started with the Atmos REST API
Table 6 defines the parameters.

Table 6 URL parameters (page 1 of 2)

Parameter Description

location /objects/object_ID

— OR —
/namespace/pathname

For example:
/rest/objects/496cbaada2a8bc200496cbb0dd04a004970ce8be68

a6

— OR —
/rest/namespace/videos/mycoolvideo

uid The UID (and optional subtenant). The UID must have read access to the
requested object.

expires The expiration date/time, specified in seconds since Jan 1 1970 UTC 00:00:00.
For example, to expire the object at Fri Feb 20 09:34:28 -0500 2009, expires
would be 1235140468. Requests made after this time will fail.

signature Base64-encoded HMAC-SHA1 of the hash string. See “Calculating the signature”
on page 35. The URL is signed using the UID's secret key, to prevent tampering.

disposition Optional. Use to force the browser to download the content. Use the filename
parameter in conjunction with disposition to set the name of the object being
downloaded.
The content of disposition should be URL-encoded (and UTF-8 filenames should
be double-encoded). Atmos will unencode the data once, and the disposition
value will be appended to the end of the signature string in lowercase for signing
purposes.
For backwards compatibility, if disposition is not specified, the signature string
will not have anything appended including the typical \n for an empty value.
For example:
disposition: attachment

This parameter corresponds to the HTTP Content-Disposition header described in
RFC 2183, 5987, and 6266.
34 EMC Atmos Version 2.4 Programmer’s Guide

Getting started with the Atmos REST API
Example
The following example is one line. For readability, however, it is shown here on several
lines.

http://MyAtmosServer/rest/objects/5ca1ab1ec0a8bc1b049412d09a5108049417
67490dde?
uid=64dbbc37bef04889b175c9ee21b0517b%2Fuser1&
expires=1235140468&
signature=GJdwY1D1ex2CCyuPIyGMc5HdSzw%3D

Calculating the signature
The signature is defined and calculated as described in “Signature” on page 141.

HashString is computed as follows:

GET + '\n' +
requested-resource + '\n' +
uid + '\n' +
expires

where + is the concatenation operator, and requested-resource is lowercase.

If disposition is included in the URL, the hashstring is computed including the disposition
like this:

GET + '\n' +
requested-resource + '\n' +
uid + '\n' +
expires + '\n' +
disposition

filename Optional. Use with disposition to set the name attribute of the object being
downloaded. Specify a quoted string. For example:
filename=”filename.txt”

The following example shows how to specify the filename value when using
UTF-8 encoded characters. To download the file named:

You’d specify the value like this:
disposition: attachment; filename*=UTF-8
“%D0%B1%C3%B6%EF%BD%BC.txt”

Note: Not all browsers support UTF-8 encoding.

If you are not sure whether your customers are using browsers that support
UTF-8, then you can supply filename in both ways. For example:
disposition: attachment; filename="no UTF support.txt";
filename*=UTF-8 “%D0%B1%C3%B6%EF%BD%BC.txt”

When downloading namespace objects, typically set the disposition to
attachment without the filename option because the browser can use the file
name supplied by the namespace URL.
When downloading objects from the object space, use filename to supply a more
meaningful name for users.

Table 6 URL parameters (page 2 of 2)

Parameter Description
Providing anonymous access 35

Getting started with the Atmos REST API
When computing HashString, the values for uid and signature should not be URL-encoded.
(They should be URL-encoded when piecing together the final URL.) For example, this UID:

64dbbc37bef04889b175c9ee21b0517b/user1

becomes:

64dbbc37bef04889b175c9ee21b0517b%2Fuser1

This signature:

GJdwY1D1ex2CCyuPIyGMc5HdSzw=

becomes:

GJdwY1D1ex2CCyuPIyGMc5HdSzw%3D

Here is a sample HashString computation:

GET\n
/rest/objects/5ca1ab1ec0a8bc1b049412d09a51080494167490dde\n
64dbbc37bef04889b175c9ee21b0517b/user1\n
1235140468

In this case, the base64-encoded key that was used is

LJLuryj6zs8ste6Y3jTGQp71xq0=.

Filename parameter and UTF-8 considerations

Newer implementations of URL encoding (based on updated RFCs) encode spaces as
"%20". Older implementations might encode the space as a plus sign (+). Java's
URLEncoder still encodes spaces as "+". You should verify that your encoding is correct. In
Java, the code looks like this:

if(disposition != null) {
 disposition = URLEncoder.encode(disposition, "UTF-8");
 // For some reason, Java uses the old-style + encoding for
 // spaces, but Apache expects the newer %20.
 disposition = disposition.replace("+", "%20");

query += "&disposition=" + disposition;
 }
36 EMC Atmos Version 2.4 Programmer’s Guide

Getting started with the Atmos REST API
Using access tokens for anonymous upload and download

Atmos provides an API for creating and managing access tokens that enable
non-authenticated users to directly upload or download a single Atmos object using a web
browser and an HTML form. You can program the HTML form to pass in user metadata and
many of the other parameters normally passed in on Atmos Create or Get operations.

The access token defines what the user can do. Specifically, it controls:

• How long the access token can be used.

• The IP addresses the upload or download request can originate from.

• The number of times the token can be used to upload or download content.

• The content upload size (in bytes).

• The valid HTML form field elements that can exist on an upload request including any
validation for those fields.

To learn more about managing access tokens see:

For more information about anonymous download, see “Downloading content
anonymously” on page 81.

About the HTML form for anonymous upload
To upload content using an access token, you use an HTML form displayed in a browser.
The HTML form must include:

• A form declaration — The form declaration which must meet these requirements:

• Encoding — UTF-8 encoded.

• HTTP method— POST.

• enctype — Set to multipart/form-data (see RFC 1867) for file uploads and text area
uploads.

• form action — Set to:

http://<Atmos_endpoint>/rest/accesstokens/<token_id>

• One or more form fields — The form field validation is defined by the access token
policy. For more information, see “About the access token policy document” on
page 38.

Table 7 Access token management operations

Management operation See

Create “Creating an access token” on page 69

Delete “Deleting an access token” on page 75

Get details for one access token “Getting access token info” on page 82

List all available tokens for a subtenant “Listing access tokens” on page 100
Providing anonymous access 37

Getting started with the Atmos REST API
Table 8 describes additional form fields.

About the access token policy document
The access token policy defines rules about how a specific access token can be used —
whether it can be used only for upload, only for download, or for both. It also defines rules
about how the anonymous user must complete the form during an upload request —
including field validation rules. If any of the form’s field fail the policy evaluation, the
upload request fails.

Table 8 Form fields

Name Description Required?

x-emc-file Specifies the file to be uploaded to Atmos.
• The file content must be the last field in the

form.
• The user can upload one file at a time.
• If this access token points to a directory, the

uploaded filename will be created in that
directory; otherwise the uploaded file name is
ignored.

• The Content-Disposition part header requires a
specific order. The name parameter must
appear before the filename parameter (for
example, ‘form-data; name=”data”;
filename=”foo.txt”’). Browsers typically provide
this order by default.

Yes

x-emc-redirect-url Specifies the URL the requesting application is
redirected to on successful upload. This field must
be specified in the token policy or the upload will
be rejected.
The URL must be absolute and if it can not be
interpreted, error 1002 (HTTP 400) is returned. The
redirected request will include these query string
parameters:
• status — true (indicating a successful upload).
• tokenId — the token ID.
• id — the object ID of the newly created object.

No

x-emc-listable-meta or
x-emc-meta

Specifies the non-listable and listable metadata
tags to associate with the file/object being
uploaded. This field must be specified in the token
policy or the upload will be rejected.

No
38 EMC Atmos Version 2.4 Programmer’s Guide

Getting started with the Atmos REST API
Table 9 describes the access token policy document elements. They must appear in the
order shown in the table.

Table 9 Access token policy document elements

Element name Description

expiration (Optional). The expiration date of the policy in ISO8601 GMT date
format. If not specified, the access token expires 24 hours from the
time it was created.

max-uploads Defines whether the token can be used to upload content.
Values are:
• 1 — The token can be used to upload content one time. If you

specify a value greater than 1, Atmos resets it to 1.
• 0 — The token cannot be used to upload content.

max-downloads Defines the number of times that an unauthenticated user can
download a file using the access token. Values are:
• 0 — The token cannot be used for downloads (the default).
• > 0— The number of times it can be downloaded.

Note: If a download request returns an HTTP 404 error, the request is
counted as a download and will reduce the value of max-downloads.

source Container for the collection of rules that define the IP addresses
where uploads can originate from. Values are:
• allow — An IP address or group of addresses in CIDR format from

which user can access given access token.
• deny — An IP address or group of addresses in CIDR format from

which user can not access given access token.

content-length-range Restricts the upload size to a specific length, in bytes. You
must specify the minimum and maximum number of bytes of
uploaded content from and to attributes.

form-field elements
(zero or more)

The form-field elements in the policy document are used to
validate the contents of the uploaded form. Each form-field
element in a policy imposes a restriction to a corresponding
field of the form using a condition for the form-field element.
You must specify one condition for each form field, and you
can create more complex matching criteria by specifying
multiple conditions for a form field. If an uploaded form
contains a field not specified here, it will be rejected. This
includes x-emc-meta and x-emc-listable-meta.
The only mandatory attribute is name which defines the name
of the form field that the restriction applies to. The name
element has one mandatory boolean attribute called
optional. Use the optional attribute to specify that the field
can be absent from a form.
Providing anonymous access 39

Getting started with the Atmos REST API
Table 10 describes the condition matches for form fields.

Example
The access token:

• Expires after December 2, 2012.

• Allows 1 upload. Allows 0 downloads. (The policy does not specify this value so it
uses the default.)

• Can only be used by the IP 127.0.0./24.

• The upload/download can be in the range of 10 to 11000 bytes.

• The field with name x-emc-redirect-url must be present

• The field x-emc-meta must contain a comma-separated list of key-value pairs.

<?xml version="1.0" encoding="UTF-8"?>
<policy>
<expiration>2012-12-01T12:00:00.000Z</expiration>
<max-uploads>1</max-uploads>
<source>
<allow>127.0.0.0/24</allow>
</source>
<content-length-range from="10" to="11000"/>
<form-field name="x-emc-redirect-url"/>
<form-field name="x-emc-meta" optional="true">
<matches>^(\w+=\w+)|((\w+=\w+),(\w+, \w+))$</matches>
</form-field>
</policy>

Table 10 Condition matching for form fields

Condition Description

Exact Matches Use when a form field must match specific values. In this example, the user
must enter log_file_10_20_2011.log in the x-emc-form-filename field:
<form-field name="x-emc-form-filename">
<eq>log_file_10_20_2011.log</eq>
</form-field>

Starts With Use when the field must start with a certain value. In this example, the
x-emc-form-filename must start with log_file.txt:
<form-field name="x-emc-form-filename">
<starts-with>log_file_</starts-with>
</form-field>

Ends With Use when the field must end with a specific value. In this example, the
x-emc-form-filename field must end with .log:
<form-field name="x-emc-form-filename">
<ends-with>.log</ends-with>
</form-field

Contains Use to specify a string that must be present in the field. In this example, the
x-emc-groupacl field must contain the string FULL_CONTROL:
<form-field name="x-emc-groupacl">
<contains>FULL_CONTROL</contains>
</form-field>

Matches Use to specify a regular expression that will be used to check validity of a field.
In this example, the form field x-emc-meta is optional, and it must be populated
with a comma-separated list of values.
<form-field name="x-emc-meta" optional="true">
<matches>^(\w+=\w+)|((\w+=\w+),(\w+, \w+))$</matches>
</form-field>
40 EMC Atmos Version 2.4 Programmer’s Guide

CHAPTER 3
Using Amazon S3 Applications with Atmos

Atmos natively supports the Amazon Simple Storage Service (S3) API as an access method
for data operations between S3-based applications and Atmos. This chapter describes the
Atmos support for Amazon S3 applications. It includes the following topic:

• Using S3 with Atmos ... 42
• S3 Bucket configuration and performance... 45
• S3 bucket addressing.. 46
Using Amazon S3 Applications with Atmos 41

Using Amazon S3 Applications with Atmos
Using S3 with Atmos
Atmos natively supports the most common operations of the Amazon S3 API (version
2006-03-01) through a web services module that runs on Atmos access nodes as shown
in Figure 2.

You can find the list of supported S3 operations in Table 11 and the list of unsupported
operations in Table 12.

Figure 2 S3 applications running against an Atmos system

The service endpoints for Atmos S3 applications are:

http://Atmos_accessnode_IP:8080
https://Atmos_accessnode_IP:8443

Existing S3 applications can read and write data to Atmos without requiring additional
application development — except that you supply Atmos credentials (UID/shared secret),
and not S3 credentials (Access Key ID/Secret Access Key) on the authentication request.

Contact your Atmos system administrator to obtain the Atmos UID/shared secret and the
access node IP address.
42 EMC Atmos Version 2.4 Programmer’s Guide

Using Amazon S3 Applications with Atmos
Table 11 lists the Amazon S3 operations supported by Atmos.

Table 11 Supported S3 operations

Category Operation

Bucket operations Delete Bucket

GET Bucket

GET Bucket ACL

GET Bucket Location

GET Bucket Versioning

GET Service

List Multipart Uploads

PUT Bucket

PUT Bucket ACL

Object operations DELETE Object

DELETE Multiple Objects

GET Object

GET Object ACL

HEAD Object

POST Object

PUT Object

PUT Object ACL

Multipart Upload – Initiate, Upload, Complete, Abort, List parts
Using S3 with Atmos 43

Using Amazon S3 Applications with Atmos
Table 12 lists the unsupported S3 operations.

When one of the unsupported operations is used, Atmos return a 501 (Not Implemented)
HTTP status code, and the following message: “This S3 operation is currently not
implemented.”

Table 12 S3 operations not supported by Atmos

Category Operation

Bucket operations Delete Bucket CORS

Delete Bucket lifecycle

Delete Bucket policy

Delete Bucket tagging

Delete Bucket website

Get Bucket CORS

Get Bucket lifecycle

Get Bucket tagging

Get Bucket policy

Get Bucket notification

Get Bucket logging

Get Bucket requestPayment

Get Bucket website

Put Bucket CORS

Put Bucket lifecycle

Put Bucket logging

Put Bucket notification

Put Bucket policy

Put Bucket requestPayment

Put Bucket tagging

Put Bucket versioning

Put Bucket website

Object operations Get Object torrent

Get Object versions

Post Object restore
44 EMC Atmos Version 2.4 Programmer’s Guide

Using Amazon S3 Applications with Atmos
S3 Bucket configuration and performance
S3 buckets can be configured in either flat mode or one-to-one mode. Choosing the mode
to use depends on whether the keys are hierarchical or not. One-to-one mode is the
default.

IMPORTANT

Set the bucket’s mode immediately after creating the bucket. If you change the mode after
objects have been ingested, those objects become inaccessible.

Flat mode provides the best performance for applications that store millions of keys and
the keys are not hierarchical. An example of a flat key is a UUID. Applications that store
objects without any hierarchy generally put all of their keys in the root of the bucket
without a prefix such as a directory. Flat mode’s limitation is that listing buckets using the
prefix option is not supported. A key using flat mode looks like this:

/bucket/a1e8eb5c-dc2a-4a02-a71b-0fab8bb28c3b

One-to-one mode supports applications that treat S3 keys like a traditional directory
structure with prefixes separated by slashes. In one-to-one mode, prefix searching
performs well as long as you use the standard delimiter (“/”). One-to-one mode’s
limitation is that, like a directory in Atmos, you are limited to 64,000 objects per directory
(prefix). A key in one-to-one mode (or hierarchical mode) looks like this

/bucket/articles/2013-09/document234/images/header.jpg

The bucket is stored as a directory in the Atmos namespace, you can also optionally
change the bucket mode by setting the same metadata on the Atmos directory. Atmos
manages bucket mode configuration through the user metadata key called
bucket-mapping-type. By default, bucket-mapping-type is set as one-to-one. You can set
or get this value by using PUT/GET bucket-tagging operation.

To programmatically set the bucket-mapping-type to flat, use the PUT bucket-tagging
operation like this:

PUT /?tagging HTTP/1.1
Host: BucketName.s3.amazonaws.com
Date: date
Authorization: authorization string (see Authenticating Requests (AWS

Signature Version 4))

<Tagging>
 <TagSet>
 <Tag>
 <Key>bucket-mapping-type</Key>
 <Value>flat</Value>
 </Tag>
 </TagSet>
</Tagging>

To determine the bucket’s current setting, use the “Getting user metadata” operation. If
bucket-mapping-type is not one-to-one, it is set to flat. Otherwise it is set to one-to-one.

Through the Atmos REST API, a bucket’s directory path is:

/s3/<bucket name>
S3 Bucket configuration and performance 45

Using Amazon S3 Applications with Atmos
For example, for a bucket called “mybucket”, the directory to modify would be:

/s3/mybucket

S3 bucket addressing
You can address an S3bucket in these ways:

For the virtual host style bucket, the following host names are supported by default:

• s3.amazonaws.com

• localhost

• localhost.localdomain

To enable the virtual host style bucket for additional host names, the DomainNames key in
the Atmos S3 configuration file must include the additional host names.

Configuration errors

If the Atmos system is not configured to support your hostname, you might see the errors
described in this section.

Missing DNS wildcard entry
When the DNS does not include the wildcard entry, for example: *.s3.domain.com, the
DNS resolution of mybucket.s3.domain.com fails, and you get an error like the following:

Amazon.S3.AmazonS3Exception: Maximum number of retry attempts reached
: 3

System.Net.WebException: The remote name could not be resolved:
'mybucket.s3.domain.com' at System.Net.HttpWebRequest.GetResponse()
at Amazon.S3.AmazonS3Client.getResponseCallback[T](IAsyncResult
result)

Missing DomainNames key
When the DomainNames key has not been set by the Atmos system administrator, Atmos
does not interpret the resource correctly, and you get an error like the following:

Amazon.S3.AmazonS3Exception: The specified method is not allowed
against this resource.

at Amazon.S3.AmazonS3Client.processRequestError(String actionName,
HttpWebRequest request, WebException we, HttpWebResponse
errorResponse, String requestAddr, WebHeaderCollection& respHdrs,
Type t, Exception& cause) at
Amazon.S3.AmazonS3Client.handleHttpWebErrorResponse(S3Request
userRequest,WebException we, HttpWebRequest request,
HttpWebResponse httpResponse, Exception& cause, HttpStatusCode&

Bucket style Bucket address Example Works by default
with Atmos

Path style bucket http://hostname/bucket http://s3.sampleorg.org/samplebucket Yes

Virtual host style
bucket

http://bucket.hostname/ http://samplebucket.s3.sampleorg.org/ No
46 EMC Atmos Version 2.4 Programmer’s Guide

Using Amazon S3 Applications with Atmos
statusCode) at
Amazon.S3.AmazonS3Client.getResponseCallback[T](IAsyncResult
result)
S3 bucket addressing 47

Using Amazon S3 Applications with Atmos
48 EMC Atmos Version 2.4 Programmer’s Guide

CHAPTER 4
Common REST Headers

This chapter describes the common REST headers. For a list of the headers related to
specific requests and responses, refer to each operation.

• Standard HTTP headers ... 50
• Atmos custom headers ... 52

A request can have up to 100 HTTP headers, each up to 8kb.
Common REST Headers 49

Common REST Headers
Standard HTTP headers
This section describes the standard HTTP headers typically used in Atmos
requests/responses. They include:

• “Content-Length”

• “Content-Type”

• “Date”

• “Expect”

• “Location”

• “Range”

Content-Length

The length of the request/response body, in bytes. It must be >= 0.

Syntax
content-length: <num-bytes>

For example:

content-length: 211

Content-Type

Optional. Used to get and set the content type of the object. The default is
application/octet-stream. Any value can be entered here, but only valid HTTP content
types are understood when data is retrieved; for example, by a browser.

Syntax
content-type: <HTTP content-type>

For example:

content-type: application/octet-stream

Date

(Optional: Date and/or x-emc-date must be in the request.)

Date in UTC format, as defined in RFC 2616, section 3.3.1; for example, Thu, 31 Jan 2008
19:37:28 GMT. Many HTTP clients set this header automatically.

This date is used to check whether a request is valid within the web server's validity time
window. For this purpose, the timestamp in the x-emc-date header takes priority over this
header. The Web server first checks for the x-emc-date header and uses its timestamp. If
the x-emc-date header is not present, the Web server checks for the Date header and uses
its timestamp.

This date also is used for signature computation; see “REST authentication: securing REST
messages with signatures” on page 141.
50 EMC Atmos Version 2.4 Programmer’s Guide

Common REST Headers
Syntax
Date : date_in_UTC_format

See Also
“x-emc-date”

Expect

Optional. May be used with the 100-continue expectation.

Sending this request header tells the server that the client will wait for a 100 Continue
response before sending the request body. This is useful if you want the server to validate
all request headers (including the signature), before the client sends data. This header
may be used with POST and PUT methods, especially to create and update objects.

Syntax

For example:

Expect: 100-continue

See Also
“Getting better write performance” on page 19

Location

Included in responses when creating objects or creating versions. It contains the object ID
for the newly created objects.

Syntax
Location: path/objectID

For example:

location: /rest/objects/4d773b6ca10574f404d773bd3bedfc04d776693243b8

Range

When updating an object, you can update either the entire object or a single range of an
object. To update a single range, use the Range header.

For reading an object, byte ranges are implemented per the HTTP 1.1 specification. You
may request the entire object, a single range of an object, or multiple ranges of an object.
When multiple ranges are requested, a multipart message is returned. The multipart
media type is “multipart/byteranges.”

Range header formats:

• Format: bytes=first-last

• Example: range: bytes=10-20

• Description: From first byte index to last byte index, inclusive.

• Use: Reading or updating an object
Standard HTTP headers 51

Common REST Headers
• Format: bytes=first-

• Example: range: bytes=10-

• Description: From first byte index until the end of the object (for example, object
size - 1)

• Use: Reading an object

• Format: bytes=-length

• Example: range: bytes=-30

• Description: The last length bytes.

• Use: Reading an object

Syntax
Range: Bytes=begin_offset-end_offset

See Also
HTTP 1.1 specification at
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.35

Atmos custom headers
The headers in this section are proprietary to the Atmos REST API. They include:

x-emc-accept

Optional. Use with a list objects request to define the format of the returned object IDs list.
Values can be:

• text/plain— Returns the object list as plain text. Each object ID is returned on a
separate line separated by the \n. Use this option if you want better performance
(because the response body is smaller), and do not want Atmos to return any
metadata associated with the objects. Requesting metadata when this header is
present results in an invalid argument error (HTTP code 1002).

“x-emc-accept” “x-emc-auth-ver”

“x-emc-delta” “x-emc-date”

“x-emc-groupacl” “x-emc-force”

“x-emc-limit” “x-emc-include-meta”

“x-emc-listable-tags” “x-emc-listable-meta”

“x-emc-objectid” “x-emc-meta”

“x-emc-policy” “x-emc-path”

“x-emc-signature” “x-emc-redirect-url”

“x-emc-tags” “x-emc-system-tags”

“x-emc-uid” “x-emc-token”

“x-emc-user-tags” “x-emc-unencodable-meta”

“x-emc-utf8” “x-emc-useracl”

“x-emc-wschecksum”
52 EMC Atmos Version 2.4 Programmer’s Guide

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.35

Common REST Headers
• text/xml — (default). Returns the object list as an XML document. Use this option if
you want to request object metadata with the object list.

Syntax
x-emc-accept:text/xml |text/plain

For example:

x-emc-accept:text/xml

See Also
“Listing objects”, “x-emc-include-meta”

x-emc-auth-ver

Optional. Makes the URI signature algorithm case sensitive.

By default, the Atmos signature algorithm is case insensitive. As a result, two different
objects - for example, one with file name like 'FiLe naMe' and the other with a file name
like 'file name' - may have the same signature. Making the signature algorithm case
sensitive avoids this problem. Also, making the signature algorithm case sensitive
increases security.

The client specifies the x-emc-auth-ver header to indicate which authentication version it
wants to use.

• If the x-emc-auth-ver header is not specified, the case insensitive approach is used,
providing backwards compatible. By default, the authentication approach of REST
requires no customer application change. Existing REST clients can still work (using
the case insensitive authentication version) without any modification

• If x-emc-auth-ver header is equal to 1, use case insensitive authentication.

• If x-emc-auth-ver header is equal to 2, use case sensitive authentication.

Syntax
x-emc-auth-ver:1|2

For example:

x-emc-auth-ver:2

x-emc-date

Optional. Date and/or x-emc-date must be in the request.

Specify the date UTC format, as defined in RFC 2616, section 3.3.1; for example, Thu, 31
Jan 2008 19:37:28 GMT. This is set by the user.

Atmos uses this date to check whether a request is valid within the web server's validity
time window. For this purpose, the timestamp in this header takes priority over the
standard Date header. The web server first checks for the x-emc-date header and uses its
timestamp. If the x-emc-date header is not present, the Web server checks for the Date
header and uses its timestamp.

This date also is used for signature computation.
Atmos custom headers 53

Common REST Headers
This header is provided because some development frameworks set the standard HTTP
Date header automatically and do not allow the application developer to set it. In such
cases, the developer can set and use this header for signature computation.

Syntax
x-emc-date : date_in_UTC_format

See Also
“REST authentication: securing REST messages with signatures”

x-emc-delta

Present only in responses from the server. The value of this header specifies the number
of bytes by which the total disk space used by the user went up (positive number) or down
(negative number) as a result of the operation.

Syntax
x-emc-delta: <num-bytes>

For example:

x-emc-delta: 211

x-emc-force

(Optional). Specifies whether to overwrite a file or directory when performing a rename
operation in the namespace and an object of that type already exists with the specified
name.

When not specified, the value is false and the file or directory is not overwritten. In this
case the rename operation will fail.

Syntax
x-emc-force: true|false
For example:

x-emc-force:true

See Also
“Renaming a file or directory in the namespace”, “x-emc-force”

x-emc-force-overwrite

When specified on a POST request, the object will be created if it does not exist, and will
be overwritten if it does exist.

Syntax
x-emc-force overwrite: true|false

For example:

x-emc-force overwrite: true
54 EMC Atmos Version 2.4 Programmer’s Guide

Common REST Headers
x-emc-groupacl

Sets the access rights to this object for the specified user group(s). Valid values are:

• READ

• WRITE

• NONE

• FULL_CONTROL

These values are not case-sensitive when specified but are always returned in uppercase.
Only the OTHER group is supported; this applies to everyone other than the object owner.

Syntax
x-emc-groupacl:other=permission

x-emc-include-meta

(Optional) Use with list object or read of directory object requests. If true, the request
returns an object list that includes system and user metadata. Use with list object or read
of directory object requests.

When this header is present, the “x-emc-accept” cannot be set to text/plain.

Syntax
x-emc-include-meta: true|false
For example:
x-emc-include-meta: true

See Also
“Reading an object”, “Listing objects”, “x-emc-accept”

x-emc-limit

(Optional) Specifies the maximum number of objects that should be returned. The
response might include fewer items. If false or not specified, there is no limit.

The Atmos system might impose a limit on the number of items returned to ensure that
system performance is not impacted if a very large resultset is requested. For listing
versions the upper limit is 4096.

Syntax
x-emc-limit: <integer>

For example:

x-emc-limit: 2

See also
“x-emc-token”“Listing objects,”“Listing versions,”, and “Reading an object.”
Atmos custom headers 55

Common REST Headers
x-emc-listable-meta

Used in requests to set listable metadata tags and their values.

There can be only one of these headers per request, with up to 127 comma-separated,
name-value pairs.

If you are using both listable (x-emc-listable-meta) and non-listable (x-emc-meta)
metadata tags, the combined total of name-value pairs cannot exceed 127. For example, if
you define 50 listable name-value pairs, you have 77 available for use as non-listable
tags.

Metadata names and values passed through the REST interface can use any characters
from the iso-8859-1 character set.

This header can be used in the following requests: creating an object, updating an object,
and setting user metadata. It can also occur in responses for getting user metadata and
reading an object.

To use this header in an anonymous upload form, it must be included in the token policy
or the upload will be rejected.

Syntax
x-emc-listable-meta: tag_name1=value1 [,tag_name2=value2...]

See Also
“Creating an object”, “Updating an object”, “Setting user metadata”“Getting user
metadata”, “Reading an object”

x-emc-listable-tags

Occurs in responses to return listable metadata tags for an object (which are set with the
x-emc-listable-meta header).

When writing data in Unicode format, the data must be percent-encoded, and the request
must include the “x-emc-utf8” header or the request fails.

Special characters: — If a metadata tag name contains a character that is not in the
iso-8859-1 character set, that character is replaced with a mark question mark (?)
character for display purposes. For example, consider a metadata tag name eta
(containing the Greek letter Beta). The Beta character may not be sent as a HTTP header,
so it is replaced in the returned list as follows:

x-emc-listable-tags: mykey1, mykey2, ?eta

Syntax
x-emc-listable-tags: tag_name1 [,tag_name2...]

See Also
“x-emc-listable-meta”

x-emc-meta

Used in requests and responses, to set and get non-listable metadata tags and their
values.
56 EMC Atmos Version 2.4 Programmer’s Guide

Common REST Headers
When used to write data in Unicode format, the data must be percent-encoded, and the
request must include the “x-emc-utf8” header or the request fails.

When returned on a create response, it includes the retention and deletion values for the
policy applied to the object just created.

Limitation: — There can be only one of these headers per request, with up to 127
comma-separated, name-value pairs. Metadata names and values passed via the REST
interface can use any characters from the iso-8859-1 character set.

If you are using both listable (x-emc-listable-meta) and non-listable (x-emc-meta)
metadata tags, the combined total of name-value pairs cannot exceed 127. For example, if
you define 50 listable name-value pairs, you have 77 available for use as non-listable
tags.

To use this header in an anonymous upload form, it must be included in the token policy,
or the upload will be rejected.

Syntax
x-emc-meta: tag_name1=value1 [,tag_name2=value2...]

For example:

x-emc-meta: part1=order

See Also
“x-emc-listable-meta”

x-emc-objectid

Use when creating an access token for an anonymous download. It must be a valid Atmos
object ID. The object must exist. If this header is specified, the x-emc-path cannot also be
specified.

Syntax
x-emc-objectid: <object ID>

For example:

x-emc-objectid: 499ad542a1a8bc200499ad5a6b05580499c3168560a4

See Also
create access token, “x-emc-path”

x-emc-path

Use when:

• Submitting a request to rename a file or directory — This header specifies the full path
to the new directory or file name within the same namespace. If you specify a parent
directory that does not exist, the operation creates it.

Note: You cannot use this to move a file or directory to a different namespace.
Atmos custom headers 57

Common REST Headers
• Creating an access token for use with anonymous upload or download — This header
must be a valid Atmos namespace path to the location where the access token
uploads or downloads content. The value can be a folder or a full path that includes
the file name. If the path is a directory, it must end with a forward slash ‘/’ and an
uploaded file will be created under that directory. On an upload operation, Atmos
does not create any directories that do not already exist. If this header is specified,
the x-emc-objectid cannot also be specified. When not specified, the object interface
is assumed. On an upload operation, if an object of the same name or Object ID
exists, Atmos returns an already exists error — it does not overwrite it.

If the data passed on this header is in Unicode format, you must also pass the
“x-emc-utf8” header on the request.

Syntax
x-emc-path: <path-expression>

For example:

x-emc-path: full/path/to/new/name

See Also
“Renaming a file or directory in the namespace”, “x-emc-force”, create access token

x-emc-policy

Occurs in all responses. The value depends on the type of request:

• For requests that deal with the actual content of an object (for example, creating,
deleting, reading, and versioning an object), the value is the name of the policy
applied to the object.

• For other operations (for example, metadata or ACL operations), the value of
x-emc-policy is set to the reserved word _int.

Syntax
x-emc-policy: <policy-name| _int>

For example:

x-emc-policy: default
or

x-emc-policy: _int

x-emc-redirect-url

(Optional.) When using the anonymous upload feature, this is the absolute URL the
requesting application is redirected to on successful upload. This field must be specified
in the token policy or the upload is rejected.

The redirected request includes these query string parameters:

• status — true (indicating a successful upload).

• tokenId — the token ID.
58 EMC Atmos Version 2.4 Programmer’s Guide

Common REST Headers
• id — the object ID of the newly created object.

If x-emc-redirect-url is not specified, upon success a 201 HTTP response code is returned
and the object id is returned in the Location header.

Table 13 describes the HTTP codes returned for various error conditions when this header
is not specified.

Syntax
x-emc-redirect-url: http://<IPAddress>/<pagename.htm>

x-emc-signature

Use to authenticate the UID making the request.

See “REST authentication: securing REST messages with signatures” on page 141 for
details on constructing this header.

Syntax
x-emc-signature: signature

x-emc-system-tags

(Optional) Use to specify system metadata tags to be returned for each object that is
retrieved. Can be used in combination with “x-emc-user-tags”.

If the data passed on this header is in Unicode format, you must also pass the
“x-emc-utf8” header on the request.

Syntax
x-emc-system-tags: tag_name1 [,tag_name2...]

For example:

x-emc-system-tags: atime, size

See Also
“Reading an object”, “Listing objects”, “x-emc-user-tags”

x-emc-tags

Use in requests to retrieve user metadata or system metadata by tag name.

Table 13 HTTP codes returned if x-emc-redirect-url is not specified

HTTP Code Condition

301 The content were successfully uploaded.

500 A server-side error occurred.

400 The URL cannot be interpreted.

403 An authentication error occurred.
Atmos custom headers 59

Common REST Headers
Occurs in responses to get non-listable metadata tags for an object (which are set with the
“x-emc-meta” header).

This header has the following limits:

• Some operations accept only one tag name; others accept multiple tag names,
separated by commas. For correct usage, see the documentation for the operation.

• There can be only one of these headers per request or response.

• For limits on the character set, see the description of special characters on page
“Special characters:” on page 56.

Syntax
x-emc-tags: tag_name1 [,tag_name2...]

For example:

x-emc-tags: color

See Also
“Listing objects”, “x-emc-meta”

x-emc-token

(Optional) When present in a response, this header indicates that more data exists than
was returned, and it provides an identifier to use to retrieve the next item. You use the
identifier in a subsequent request to specify the item where data retrieval should start for
the next (page) set of results.

This header might be returned in the response headers at any time when using “Listing
objects”, “Listing versions”, or when “Reading an object” to return a list of directories.

When x-emc-token is not returned in the response, there are no more results.

If x-emc-token is specified and “x-emc-limit” is set to 0, all objects from that point on are
requested.

Note: The x-emc-token is used to maintain state and should not be interpreted.

If the object that the x-emc-token points to is no longer indexed under the given tag,
(either because the object has been deleted or because it's listable metadata has been
removed), the operation might fail with the 1037 error code.

Syntax
x-emc-token: <token>

For example:

x-emc-token: file3

See Also
“Getting listable tags”, “Listing objects”, “Listing versions”, “Reading an object”,
“x-emc-limit”
60 EMC Atmos Version 2.4 Programmer’s Guide

Common REST Headers
x-emc-uid

Use to specify the UID (user_id) of an application that is using the API, and the subtenant
(subtenant_id) to which the UID (user_id) belongs.

If the subtenant ID is missing, Atmos uses the default subtenant of the tenant who has
access to the node where the REST call is made. Only one UID is allowed per request. The
shared secret associated with this UID is used for signature generation; see “Managing
authentication” on page 140.

Syntax
x-emc-uid: subtenant_id/user_id

x-emc-unencodable-meta

Occurs only in responses. Specifies a list of metadata tags that have names and/or values
that are unencodable for REST.

Character set limits. For more on limits on the character set, see the description of Special
Characters on page 56.

Syntax
x-emc-unencodable-meta: tag_name1 [,tag_name2...]

x-emc-user-tags

(Optional) Use in list object, read object, read directory requests to specify the selected
user metadata tags to be returned as key/value pairs for each object retrieved.

Can be used in combination with “x-emc-system-tags”.

If the data passed on this header is in Unicode format, you must also pass the
“x-emc-utf8” header on the request.

Syntax
x-emc-user-tags: <tag-name>

For example:

x-emc-user-tags: state,color

See Also
“Listing objects”, “Reading an object”, “x-emc-system-tags”

x-emc-useracl

Use to set the access rights to an object for the specified UID(s) or access token. Valid
values are:

• READ

• WRITE

• NONE
Atmos custom headers 61

Common REST Headers
• FULL_CONTROL;

These values are not case sensitive when specified but always are returned in uppercase.

The UID must belong to the same subtenant to which the requesting UID belongs. A UID
created under a different subtenant cannot access objects owned by the authenticating
subtenant.

Syntax
x-emc-useracl: uid1=permission [,uid2=permission...]

x-emc-utf8

Use for:

• On requests to notify Atmos that header data is in Unicode format and has been
percent-encoded. (HTTP restricts header data from using Unicode).

• On metadata create requests where the metadata values include more than one equal
sign (=) or a comma (,).

When Atmos receives requests with this header, Atmos will:

• Unencode the percent-encoded header data before processing the request.

• Re-encode the data it returns in the response.

Client applications that submit headers that contain data in Unicode format or the special
characters (comma or more than one equal sign) must percent-encode the data before
submitting the request, and unencode the returned data.

If this header is present, and Atmos receives Unicode data that is not percent-encoded,
then

If this header is not present, but Atmos receives header data that includes non-Latin
characters, Atmos adds the header name to a a list of unencodable items, for example:
"x-emc-unencodable-meta: objname, mdkey1, ..".

Consider using the “x-emc-utf8” header with the following operations if your applications
use data in Unicode format:

• “Renaming a file or directory in the namespace”

• “Setting user metadata”

• “Getting user metadata”

• “Getting system metadata”

• “Listing objects”

• “Listing user metadata tags”

• “Getting listable tags”

• “Creating an object”, “Reading an object”, and “Updating an object”

Because Atmos will percent-encode the responses, make sure the client applications
receiving the responses are expecting to unencode them
62 EMC Atmos Version 2.4 Programmer’s Guide

Common REST Headers
Note: All metadata name/values will be percent-encoded, whether or not their encodings
represent non-ASCII characters. For example, the space character is normally
percent-encoded, so Atmos will percent-encode it.

Syntax
x-emc-utf8

x-emc-wschecksum

Use in create or update requests when:

• Your application must conform to SEC 17a-4f standards.

• You want end-to-end checksum protection of GeoParity replicas.

This header occurs in response documents in the following circumstances:

• When the create or update request is successful, the x-emc-wschecksum header is
returned to the requesting program with the same values sent with the request. If the
create or update request is not successful, the response does not include this header.

• When performing an object read (via HTTP GET and HEAD methods).

• When performing a GET System Metadata request.

Client applications are responsible for performing checksum verifications on object reads.
The values are case-sensitive.

Syntax
x-emc-wschecksum: algorithm/offset/checksumValue

where:

• algorithm — Represents the hashing algorithm used. Valid values: SHA0, SHA1, or
md5.

• offset — The offset at which the checksum was calculated.

• checksumValue — The hash of the object the user is creating or updating.

See Also
“Creating an object”, “Updating an object”
Atmos custom headers 63

Common REST Headers
64 EMC Atmos Version 2.4 Programmer’s Guide

CHAPTER 5
REST API Reference

This chapter describes the Atmos REST operations that act on objects and metadata.

• Specifying objects/files in REST commands .. 66
• REST commands ... 67
• Creating an access token... 69
• Creating an object ... 71
• Creating a version ... 74
• Deleting an access token... 75
• Deleting an object... 76
• Deleting user metadata ... 77
• Deleting a version ... 80
• Downloading content anonymously... 81
• Getting access token info .. 82
• Getting an ACL .. 83
• Getting listable tags .. 85
• Getting object info .. 88
• Getting service information ... 91
• Getting system metadata .. 92
• Getting user metadata... 96
• Listing access tokens .. 100
• Listing objects .. 102
• Listing user metadata tags .. 109
• Listing versions... 111
• Reading an object ... 112
• Renaming a file or directory in the namespace .. 126
• Restoring a version ... 129
• Setting an ACL .. 130
• Setting user metadata... 132
• Updating an object.. 134
REST API Reference 65

REST API Reference
Specifying objects/files in REST commands
Atmos implements a standard REST interface to the web service. The REST URL endpoint is
http://dns_name/rest, with a suffix URI that describes the operation path.

To create an object using either the object or namespace interface, you specify a UID.
Within the Atmos file system, the object you create is assigned a file-system UID and a
default GID (group ID), where the UID is identical to the UID you specified in your create
operation. Permissions must be set properly on the authentication system of the
file-system mounting host, to ensure that objects created via Web services are accessible
from the file-system interface. Failure to set permissions properly may result in an access
error when attempting to retrieve a file.

To delete, update, read, or version an object, include the object ID (if you use the object
interface) or filename (if you use the namespace interface).

Namespace access

Atmos web services allow you to assign a filename to an object when creating the object.
This enables clients to use their own name when referring to an object (filename), rather
than the object ID that Atmos assigns to the object.

In the REST API, there are two different URL endpoints to access the object and namespace
interfaces:

Object: /rest/objects
Namespace: /rest/namespace

For namespace access, a filename or directory name is sufficient; optionally, a full
pathname (for either a file or directory) can be specified. In a create operation, if the
pathname contains nonexistent directories, they are created automatically. The ACL
specified in the request is applied to all newly created objects (files or directories). The
metadata specified in the request is applied only to the leaf object (a file or directory).

The same set of operations is used to create, read, update, and delete both files and
directories. When dealing with directories, however, there are two extra considerations:

• When creating a directory, the specified directory name must end with a forward slash
(/):

/rest/namespace/directory_name/

For other operations, the forward slash can be used and is correct, but if it is omitted,
Atmos figures it out automatically.

• There should be no payload in the request. If there is a payload, it is ignored.

Note: An object can be modified or retrieved via the namespace interface only if it was
created via the namespace interface. If it was created with the object interface, it is
impossible to assign a filename to it later.
66 EMC Atmos Version 2.4 Programmer’s Guide

REST API Reference
Namespace file name rules
The characters allowed in file names are governed by both Atmos and HTTP URI rules.

• Atmos allows any character in the printable ASCII character set in a filename,
including ? and @.

• HTTP Request URIs allow: A-Z and a-z, 0-9, and the following special characters:

For HTTP request URIs all other ASCII characters must be URL-encoded (also referred to
as percent-encoded). For example, the space character is an ASCII character that must
be encoded. The representation of the space as an URL-encoded character is %20.

URL-encoding is only required for the Request URI in the HTTP request itself. Do not
URL-encode characters when computing the HashString to sign the request for the
CanonicalizedResource.

Suppose you request the file pictures/my profile picture. You would encode the file
name pictures/my profile picture as pictures/my%20profile%20picture. But since
the CanonicalizedResource should not be URL-encoded, the HashString would look similar
to:

GET
application/octet-stream
Wed, 16 Dec 2009 21:15:51 GMT
/rest/namespace/pictures/my profile picture
x-emc-date:Wed, 16 Dec 2009 21:15:51 GMT
x-emc-uid:47cadb22de2e46328e49bafc02f64637/user1

Because the path (filename) in the Request-URI must be URL-encoded, the request would
look similar to:

GET /rest/namespace/pictures/my%20profile%20picture HTTP/1.1
date: Wed, 16 Dec 2009 21:15:51 GMT
x-emc-date: Wed, 16 Dec 2009 21:15:51 GMT
x-emc-uid: 47cadb22de2e46328e49bafc02f64637/user1
x-emc-signature: W6rNZOSD7YMWaUEOHW6jNqIVYCg=

REST commands
Atmos supports these methods:

• POST — Creates objects, creates versions of existing objects, and sets user metadata
and ACLs for specified objects.

• GET — Retrieves object data, including metadata and ACLs.

• HEAD — There is a HEAD method corresponding to each GET method. A HEAD request
looks exactly like a GET request, except the method name is HEAD instead of GET. The
response from the server is different with a HEAD method: there is no response body,
only headers are returned. This is especially useful for ReadObject requests when one
wants to retrieve the object's user metadata, system metadata, and access-control list
but not the object itself.

hyphen (-) period (.) underscore (_) tilde (~)

exclamation point (!) dollar sign ($) ampersand (&) double quotes ("'")

parentheses (()) asterisk (*) plus sign (+) comma (,)

semi-colon (;) equal sign (=) colon (:)
REST commands 67

REST API Reference
• PUT — Updates object attributes.

• DELETE — Removes objects and metadata from the system.

In the following table, the entries in the URI column is prefixed by
http://dns_name/rest. The pathname variable is the full pathname of a file or directory.

Table 14 Data Management Operations

HTTP Method Operation URI

POST “Creating an
object”

/objects
— OR —

/namespace/pathname

“Renaming a file or
directory in the
namespace”

/namespace/pathname?rename

“Setting an ACL” /objects/objectID?acl
— OR —
/namespace/pathname?acl

GET/ HEAD “Getting an ACL” /objects/objectID?acl
— OR —
/namespace/pathname?acl

“Getting object
info”

/objects/objectid?info
— OR —
/namespace/pathname/myfile?info

“Listing objects” /objects

“Reading an
object”

/objects/objectID
— OR —
/namespace/pathname

PUT “Updating an
object”

/objects/objectID
— OR —
/namespace/pathname

DELETE “Deleting an
object”

/objects/objectID
— OR —
/namespace/pathname

Table 15 Service Operations

HTTP Method Operation URI

GET/HEAD “Getting service information” /rest/service
68 EMC Atmos Version 2.4 Programmer’s Guide

REST API Reference
Creating an access token
Creates and returns an access token that can be used by anonymous users to upload and
download content. Each access token is governed by an access token policy that you
specify when you create the access token. The access token policy defines:

For more information on access token policies, see “Using access tokens for anonymous
upload and download” on page 37.

Table 16 Versioning Operations

HTTP
Method Operation URI

POST “Creating a version”
on page 74

/rest/objects/<ObjectID>?versions

DELETE “Deleting a version”
on page 80

/rest/objects/<objectID>?versions

PUT “Restoring a version”
on page 129

/rest/objects/<objectID>?versions

GET “Listing versions” on
page 111

/rest/objects/<objectID>?versions

Table 17 Access token policy elements

Element Description

expiration A specific date when the access token expires. By default, the access
token expires 24 hours after it is created.

max-uploads Defines whether the token can be used to upload content. Values are:
• 1 — The token can be used to upload content one time. If you specify a

value greater than 1, Atmos resets it to 1.
• 0 — The token cannot be used to upload content.

max-downloads Defines whether the token can be used to download content. Values are:
• 0 — The token cannot be used for downloads (the default).
• > 0— The token can be used for the specified number of downloads.

Note: If a download request returns an HTTP 404 error, the request is
counted as a download and will reduce the value of max-downloads.

 source Container for the collection of rules that define the IP addresses where
uploads can originate from.
• allow — An IP address or group of addresses in CIDR format from which

user can access given access token.
• deny — An IP address or group of addresses in CIDR format from which

user can not access given access token.

content-length-range Defines the content upload size minimum and maximum (in bytes). This
must be the entire object size. Appends are not allowed to this object.

form-field elements
(zero or more)

Content is uploaded via an HTML form as an HTTP POST operation. The
policy must define the validation for each element on the form.
Creating an access token 69

REST API Reference
HTTP Method

POST

Object interface URI

/rest/accesstokens

Request parameters

Required request header:

• “x-emc-uid”

• “x-emc-signature”

• “x-emc-date”

Optional:

• “x-emc-path” or “x-emc-objectid”

• “x-emc-useracl”, “x-emc-groupacl” on upload requests, this ACL is applied to the
uploaded/created object. The token itself does not have ACLs assigned to it.

• “x-emc-listable-meta” or “x-emc-meta” on upload requests, sets non-listable and
listable metadata tags for objects created by this access token.

Request body element (optional)

• policy —An XML document that describes attributes of the access token. If a policy is
not specified, Atmos applies default values.

Object interface examples

Request

POST /rest/accesstokens HTTP/1.1
accept: */*
x-emc-useracl: john=FULL_CONTROL,mary=READ
date: Wed, 18 Feb 2011 16:03:52 GMT
x-emc-date: Wed, 18 Feb 2011 16:03:52 GMT
host: 192.168.0.1
content-length: 211
x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1
x-emc-signature: KpT+3Ini1W+CS6YwJEAWYWvIlIs=

Request Body

<policy>
<expiration>2011-11-01T23:59:59.000Z</expiration>
<source>
<allow>192.168.0.0/24</allow>
</source>
<form-field="x-emc-form-filename">
<starts-with>log_</starts-with>
</form-field>
</policy>
70 EMC Atmos Version 2.4 Programmer’s Guide

REST API Reference
Response

HTTP/1.1 201 Created
Date: Wed, 18 Feb 2011 16:03:52 GMT
Server: Apache
Content-Length: 0
Connection: close
Content-Type: text/xml; charset=UTF-8
location:/rest/accesstokens/4ef1ed17a1a8000f04ef1ed776c0f104f16a71e576

a3

See also
“About the access token policy document”

Creating an object
Use this operation to create and populate an object. You can optionally add ACLs and user
metadata. (Atmos does not validate user metadata passed in on this request.)

On a successful creation, Atmos:

• Returns the object ID as URI on the “Location” header.

• Automatically generates the object’s system metadata.

• Returns any retention or deletion values on the “x-emc-meta” header when the policy
applied to the object on create includes these values.

For performance, Atmos recommends that you create and populate the object in one
request, but for larger objects, you can consider creating the object and passing a chunk
of the data on the create request, then using the update operation (see “Updating an
object” on page 134) to append the rest of the data.

For the namespace interface, you can also use this operation to create directories. You can
create directories not files directly under the / directory. While creating a file, if you specify
a directory that does not exist, Atmos creates it. You can create directories in these ways:

• Implicitly — By specifying the full path for an object, and one or more new directories
are created automatically as needed, before creating the object itself.

• Explicitly — By ending the directory name with a forward slash (/). The request body
must be empty.

For applications that must conform to SEC 17a-4f standards, you must specify the
“x-emc-wschecksum” header. When you use this header, you must send the checksum of
the entire object that is part of the request. For more information, see
“x-emc-wschecksum” on page 63.

If the metadata tags that you pass in this request are Unicode, you must percent-encode
the data before submitting the request, and include the “x-emc-utf8” header on the
request. Atmos will percent-encode the values that it returns.

Permissions

For the namespace interface, you need write on the directory where you create the object.
Creating an object 71

REST API Reference
HTTP method

POST

Object interface URI

/rest/objects

Namespace interface URI

/rest/namespace/pathname

Request headers

Required:

• “Content-Length”

• “x-emc-date”or “Date”

• “x-emc-uid”

• “x-emc-signature”

• “x-emc-utf8” (only required if metadata values are in Unicode)

• “x-emc-wschecksum” (required if the application must conform to SEC 17a-4f
standards)

Optional:

• To set user metadata tags: “x-emc-listable-meta”, “x-emc-meta”

• To set ACLs: “x-emc-groupacl”,“x-emc-useracl”

Object interface examples

Create an object with listable and non-listable user metadata
This example shows how to create an object with listable and non-listable user metadata
and user and group ACLs. The default policy has been modified to include retention and
deletion periods so the response includes those values in the “x-emc-meta” header.

Request

POST /rest/objects HTTP/1.1
x-emc-listable-meta: part4/part7/part8=quick
x-emc-meta: part1=buy
accept: */*
x-emc-useracl: john=FULL_CONTROL,mary=READ
date: Wed, 18 Feb 2009 16:03:52 GMT
content-type: application/octet-stream
x-emc-date: Wed, 18 Feb 2009 16:03:52 GMT
x-emc-groupacl: other=NONE
host: 168.159.116.96
content-length: 21
x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1
x-emc-signature: KpT+3Ini1W+CS6YwJEAWYWvIlIs=

object test data here
72 EMC Atmos Version 2.4 Programmer’s Guide

REST API Reference
Response

HTTP/1.1 201 Created
Wed, 18 Feb 2009 16:03:52 GMT
Server: Apache
x-emc-policy: default
location: /rest/objects/499ad542a1a8bc200499ad5a6b05580499c3168560a4
x-emc-delta: 21
x-emc-meta: user.maui.expirationEnable=NONE,

user.maui.expirationEnd=NONE, user.maui.retentionEnable=false,
user.maui.retentionStart=2012-04-10T12:38:56Z,
user.maui.retentionEnd=2014-06-12T14:40:58Z

Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8

Namespace interface examples

Create an object and a directory
In this example, if the photos directory does not exist, Atmos creates it.

Request

POST /rest/namespace/photos/mypicture.jpg HTTP/1.1
x-emc-listable-meta: part4/part7/part8=quick
x-emc-meta: part1=buy
accept: */*
x-emc-useracl: john=FULL_CONTROL,mary=READ
date: Wed, 18 Feb 2009 16:08:12 GMT
content-type: application/octet-stream
x-emc-date: Wed, 18 Feb 2009 16:08:12 GMT
x-emc-groupacl: other=NONE
host: 168.159.116.96
content-length: 21
x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1
x-emc-signature: GTOC1GqFELjMMH9XIKvYRaHdyrk=

object test data here

Response

HTTP/1.1 201 Created
Date: Wed, 09 Mar 2011 11:37:54 GMT
Server: Apache
x-emc-policy: default
x-emc-delta: 21
location: /rest/objects/499ad542a1a8bc200499ad5a6b05580499c326c2f9
84
x-emc-meta: user.maui.expirationEnable=NONE,

user.maui.expirationEnd=NONE, user.maui.retentionEnable=false,
user.maui.retentionStart=2012-04-10T12:38:56Z,
user.maui.retentionEnd=2014-06-12T14:40:58Z

Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8

Create object using checksum

Request

POST /rest/namespace/file1.txt HTTP/1.1
accept: */*
date: Thu, 06 May 2010 16:02:25 GMT
Creating an object 73

REST API Reference
content-type: application/octet-stream
x-emc-date: Thu, 06 May 2010 16:02:25 GMT
x-emc-uid: f390a44a03bd4a80be49c373c17725f7/user1
x-emc-signature: Or/7Unux65EzA//oBpbSKGWW+4o=
x-emc-wschecksum: sha0/1037/6754eeaad9d752f079dcb9ab224ab716720b9dda

Response

HTTP/1.1 201 Created
Date: Thu, 06 May 2010 16:11:00 GMT
Server: Apache
location: /rest/objects/4be15814a205737304be158919f49104be2ea14d06a9
x-emc-wschecksum: sha0/1037/6754eeaad9d752f079dcb9ab224ab716720b9dda
x-emc-meta: user.maui.expirationEnable=NONE,

user.maui.expirationEnd=NONE, user.maui.retentionEnable=false,
user.maui.retentionStart=2012-04-10T12:38:56Z,
user.maui.retentionEnd=2014-06-12T14:40:58Z

Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8

Creating a version
Creates a point-in-time copy of the referenced object. Returns the object ID of the
versioned object in the location header. If the object ID of the referenced object is open for
writing, the create version operation fails.

The create request must meet the following requirements:

• The object being versioned must be a top-level, mutable object. It cannot be a version,
and it cannot be a directory.

• The object being versioned must be referenced by its object ID, and not its namespace
path.

Permissions

Write permissions to the object being versioned (the top-level object).

HTTP method

POST

Object interface URI

/rest/objects/<ObjectID>?versions

Namespace interface URI

Not supported

Request headers

Required:

• “x-emc-date”or “Date”

• “x-emc-signature”
74 EMC Atmos Version 2.4 Programmer’s Guide

REST API Reference
• “x-emc-uid”

Object interface examples

Request

POST
/rest/objects/491abe33a105736f0491c2088492430491c5d0d67efc?versions
HTTP/1.1

accept: */*
date: Thu, 13 Nov 2008 16:59:59 GMT
content-type: application/octet-stream
x-emc-date: Thu, 13 Nov 2008 16:59:59 GMT
host: 168.159.116.51
x-emc-uid: 6039ac182f194e15b9261d73ce044939/user1
x-emc-signature: krsCbUPZexw5AM2ZnBfd9pjtDHM=

Response

HTTP/1.1 201 Created
Date: Thu, 13 Nov 2008 16:59:59 GMT
Server: Apache/2.0.63 (rPath)
location: /rest/objects/491abe33a105736f0491c2088492430491c5d0f0daa8
x-emc-delta: 7584
Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8

Deleting an access token
Removes the specified access token.

HTTP Method

DELETE

Object interface URI

/rest/accesstokens/<token_id>

Request parameters

Required headers:

• “x-emc-uid”

• “x-emc-signature”

• “x-emc-date”

Object interface examples

Request

DELETE /rest/accesstokens/499ad542a1a8bc200499ad5a6b05580499c3168560a4
HTTP/1.1

accept: */*
date: Wed, 18 Nov 2009 14:02:00 GMT
x-emc-date: Wed, 18 Feb 2009 16:03:52 GMT
Deleting an access token 75

REST API Reference
host: 168.159.116.96
x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1
x-emc-signature: KpT+3Ini1W+CS6YwJEAWYWvIlIs=

Response

HTTP/1.1 204 No Content
Date: Wed, 18 Nov 2011 14:02:00 GMT
Server: Apache
Content-Length: 0
Connection: close
Content-Type: text/xml; charset=UTF-8
x-emc-policy: default

Deleting an object
Deletes the specified object and its associated metadata.

Permissions

For the namespace interface, you need write (execute) on the parent directory of the object
to remove. For the object interface, you need write on the object.

HTTP method

DELETE

Object interface URI

/rest/objects/<objectID>

Namespace interface URI

/rest/namespace/pathname

Request headers

Required:

• “x-emc-date”or “Date”

• “x-emc-signature”

• “x-emc-uid”

Object interface examples

Request

DELETE /rest/objects/499ad542a2a8bc200499ad5a7099940499c3e6fbbcc3
HTTP/1.1

accept: */*
date: Wed, 18 Feb 2009 16:59:41 GMT
content-type: application/octet-stream
x-emc-date: Wed, 18 Feb 2009 16:59:41 GMT
host: 168.159.116.96
x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1
x-emc-signature: AHnsdoK6vmIEP8mt97O8S8j7TKY=
76 EMC Atmos Version 2.4 Programmer’s Guide

REST API Reference
Response

HTTP/1.1 204 No Content
Date: Wed, 18 Feb 2009 16:59:41 GMT
Server: Apache
x-emc-delta: -211
Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8
x-emc-policy: default

Namespace interface examples

Request

DELETE /rest/namespace/photos/myoldpicture.jpg HTTP/1.1
accept: */*
date: Wed, 18 Feb 2009 17:01:03 GMT
content-type: application/octet-stream
x-emc-date: Wed, 18 Feb 2009 17:01:03 GMT
host: 168.159.116.96
x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1
x-emc-signature: DEIYwSJWGxHD0wuC7xHYen5lDoA=

Response

HTTP/1.1 204 No Content
Date: Wed, 18 Feb 2009 17:01:04 GMT
Server: Apache
x-emc-delta: -211
Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8
x-emc-policy: default

Deleting user metadata
Deletes user metadata (listable or non-listable) for the specified object. Pass the name of
the metadata tag to delete on the “x-emc-tags” on header in the request. To delete more
than one tag, pass the tag names in a comma-separated list.

If the request does not include the “x-emc-tags” header, the operation returns an error.

You cannot directly delete or modify system metadata.

Permissions

For both the namespace interface and the object interface, you need write on the object.

HTTP method

DELETE

Object interface URI

/rest/objects/<objectID>?metadata/user
Deleting user metadata 77

REST API Reference
Namespace interface URI

/rest/namespace/<pathname>?metadata/user

Request headers

Required:

• “x-emc-tags”

• “x-emc-date”or “Date”

• “x-emc-signature”

• “x-emc-uid”

Optional

• “x-emc-utf8” (if the user metadata tag name/value pairs are in Unicode format).

Object interface examples

• “Delete multiple tags”

• “Delete request failure”

• “Delete Unicode metadata tags”

Delete multiple tags
This request example deletes the user metadata tags state and color.

Request

DELETE
/rest/objects/4dc19958a10574f404dc199e64fc7204dcbdf1e02269?metadata
/user HTTP/1.1

accept: */*
date: Thu, 12 May 2011 14:31:15 GMT
content-type: application/octet-stream
x-emc-date: Thu, 12 May 2011 14:31:15 GMT
x-emc-tags: state,color
host: 10.238.112.140:1234
x-emc-uid: 66371ac3bd8148348c0f3f1545e2da69/test-uid
x-emc-signature: CV/gR6WIcPH9ug3TucLBpNbpdpg=

Response

HTTP/1.1 204 No Content
Date: Thu, 12 May 2011 14:31:18 GMT
Server: Apache
x-emc-policy: _int
Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8

Delete request failure
This request does not pass in the “x-emc-tags” header on the request, so it fails.
78 EMC Atmos Version 2.4 Programmer’s Guide

REST API Reference
Request

DELETE
/rest/objects/4dc19958a10574f404dc199e64fc7204dcbdf1e02269?metadata
/user HTTP/1.1

accept: */*
date: Thu, 12 May 2011 14:38:27 GMT
content-type: application/octet-stream
x-emc-date: Thu, 12 May 2011 14:38:27 GMT
host: 10.238.112.140:1234
x-emc-uid: 66371ac3bd8148348c0f3f1545e2da69/test-uid
x-emc-signature: 1OGkLeGt8QNA55Xh12Ck0J/c4GA=

Response

HTTP/1.1 400 Bad Request
Date: Thu, 12 May 2011 14:38:31 GMT
Server: Apache
Content-Length: 145
Connection: close
Content-Type: text/xml
<?xml version='1.0' encoding='UTF-8'?>
<Error>

<Code>1002</Code>
<Message>One or more arguments in the request was invalid.</Message>

</Error>

Delete Unicode metadata tags
This examples shows how to delete the metadata tag χρώμα (color). The “x-emc-tags”
value is percent-encoded, and the “x-emc-utf8” (true) is included because of the Unicode
value.

Request

DELETE
/rest/objects/4ef49feaa106904c04ef4a066e778104f071a5ff0c85?metadata
/user HTTP/1.1

date: Fri, 06 Jan 2012 16:50:31 GMT
content-type: application/octet-stream
x-emc-date: Fri, 06 Jan 2012 16:50:31 GMT
x-emc-tags: %CF%87%CF%81%CF%8E%CE%BC%CE%B1
x-emc-utf8: true
x-emc-uid: 071464e3e8fb4cce8609a623fd9df025/user1
x-emc-signature: zFBmEK/zLzvBQ9cH1ZX+015vXQU=

Response

HTTP/1.1 204 No Content
Date: Fri, 06 Jan 2012 16:50:31 GMT
Server: Apache
x-emc-policy: _int
x-emc-utf8: true
Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8

DELETE
application/octet-stream

Fri, 06 Jan 2012 16:50:31 GMT
/rest/objects/4ef49feaa106904c04ef4a066e778104f071a5ff0c85?metadata/us

er
x-emc-date:Fri, 06 Jan 2012 16:50:31 GMT
Deleting user metadata 79

REST API Reference
x-emc-tags:%CF%87%CF%81%CF%8E%CE%BC%CE%B1
x-emc-uid:071464e3e8fb4cce8609a623fd9df025/user1
x-emc-utf8:true

Namespace interface examples

Request

DELETE /rest/namespace/photos/mypicture.jpg?metadata/user HTTP/1.1
accept: */*
date: Wed, 18 Feb 2009 17:02:53 GMT
content-type: application/octet-stream
x-emc-date: Wed, 18 Feb 2009 17:02:53 GMT
x-emc-tags: part1
host: 168.159.116.96
x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1
x-emc-signature: /5RU66MJp3xGXNeybI8gYoAmXlE=

Response

HTTP/1.1 204 No Content
Date: Wed, 18 Feb 2009 17:02:53 GMT
Server: Apache
Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8
x-emc-policy: _int

Deleting a version
Deletes a specific version of the object, and returns capacity to the system once the delete
is successful. Returns an HTTP 204 — No Content error code. Once a version is deleted, it’s
object ID is no longer returned by the “Listing versions” operation.

This operation does not delete the top-level object. To delete the top-level object, use the
standard delete object. API.

Permission

Write permission to the top-level object

HTTP method

DELETE

URI

/rest/objects/<objectID>?versions

Request headers

Required:

• “x-emc-date”or “Date”

• “x-emc-signature”

• “x-emc-uid”
80 EMC Atmos Version 2.4 Programmer’s Guide

REST API Reference
Object interface examples

Request

DELETE
/rest/objects/491abe33a105736f0491c2088492430491c5d0f0daa8?versions
HTTP/1.1

accept: */*
date: Thu, 13 Nov 2008 17:00:03 GMT
content-type: application/octet-stream
x-emc-date: Thu, 13 Nov 2008 17:00:03 GMT
host: 168.159.116.51
x-emc-uid: 6039ac182f194e15b9261d73ce044939/user1
x-emc-signature: 29AQTcYe428b0p0I/xI2X9oJyfM=

Response

HTTP/1.1 204 No Content
Date: Thu, 13 Nov 2008 17:00:04 GMT
Server: Apache/2.0.63 (rPath)
x-emc-delta: -7584
Connection: close
Content-Type: text/plain; charset=UTF-8

Downloading content anonymously
Allows anonymous users to download content from Atmos using a browser if they have a
valid access token. The Atmos content is returned in the response and includes the
content-disposition header. When the namespace interface is used, the
content-disposition filename is the namespace path. When the object interface is used
the filename is the object ID.

The number of times the file can be downloaded is determined by the access token’s
policy. If a maximum number is not specified, you cannot download content.

HTTP Method

GET

Object interface URI

/rest/accesstokens/<token_id>

Namespace interface URI

/rest/accesstokens/<token_id>

Object interface example

Request

GET /rest/accesstokens/224e6a7b98104dddb3f3d650f1105476/
4ef1ed17a1a8000f04ef1ed776c0f104f15bef991f91
HTTP/1.1
accept: */*
date: Wed, 18 Feb 2011 16:03:52 GMT
host: 192.168.0.1
Downloading content anonymously 81

REST API Reference
Response

HTTP/1.1 200 OK
Date: Wed, 18 Feb 2011 16:03:52 GMT
Content-Disposition: attachment; filename=log_10_11_2011.log
Server: Apache
Content-Length: 23049
Connection: close

Getting access token info
Returns an XML document that describes the specified access token.

HTTP Method

GET

Object interface URI

/rest/accesstokens/<token_id>?info

Request parameters

Required:

• “x-emc-uid”

• “x-emc-date”

• “x-emc-signature”

Optional:

• “x-emc-token”

• “x-emc-limit”

Object interface examples

Request

GET
/rest/accesstokens/T2lbAqGoAB4E9py78d+fBPmS5HT19jx+a5E3oEk7j7Mg3AVi
GaY?info HTTP/1.1

Accept-Encoding: identity
X-Emc-Signature: u3rwJdh2NRnsB2XMlMldzt4qEm8=
Connection: close
User-Agent: Python-urllib/2.7
Host: 192.168.0.30:80
Date: Thu, 26 Apr 2012 11:19:29 GMT
X-Emc-Uid: 3c7e6b9137a0493b8fb320dc056219a6/test
X-Emc-Date: Thu, 26 Apr 2012 11:19:29 GMT

Response header

HTTP/1.1 200 OK
Date: Thu, 26 Apr 2012 11:19:28 GMT
Server: Apache
Content-Length: 318
Connection: close
82 EMC Atmos Version 2.4 Programmer’s Guide

REST API Reference
Response body

Content-Type: text/xml
<access-token>
<access-token-id>T2lbAqGoAB4E9py78d+fBPmS5HT19jx+a5E3oEk7j7Mg3AViGaY</

access-token-id>
<expiration>2012-04-27T11:15:19+0000</expiration>
<max-uploads>1</max-uploads>
<max-downloads>-1</max-downloads>
<content-length-range from="0" to="20971520"/>
</access-token>

Table 18 describes the XML elements of the response document.

Getting an ACL
Returns the ACL details associated with the specified object ID.

Permissions

Any UID within the same subtenant can perform this operation.

Table 18 Response body elements

Element Description

access-token Container element for the details of a specific access token.

access-token-id The identifier for a specific access token.

expiration The expiration date of the access token’s policy. In ISO8601
format.

max-uploads The maximum number of times that the same token can be used
for uploading a file.

max-downloads The maximum number of times the same token can be used to
download a file.

source Container element for the set of rules that define where uploads
can come from.

source/allow An IP address or group of addresses in CIDR format from which user
can access given access token.

source/deny An IP address or group of addresses in CIDR format from which user
can not access given access token.

content-length-range The minimum and maximum size of uploaded content (in bytes).

form-field Form field validation for uploads. See “About the access token
policy document” on page 38.

path The namespace path of the target object for the access token.

object-id The object ID of the target object for the access token.

useracl The user ACL for uploaded objects. See the response examples in
“Getting an ACL” on page 83.

groupacl The group ACL for uploaded objects. See the response examples in
“Getting an ACL” on page 83.
Getting an ACL 83

REST API Reference
HTTP method

GET

Object interface URI

/rest/objects/objectID?acl

Namespace interface URI

/rest/namespace/pathname?acl

Request parameters

Required:

• “x-emc-date”or “Date”

• “x-emc-signature”

• “x-emc-uid”

Object interface examples

Request

GET /rest/objects/499ad542a1a8bc200499ad5a6b05580499c3168560a4?acl
HTTP/1.1

accept: */*
date: Wed, 18 Feb 2009 16:33:09 GMT
content-type: application/octet-stream
x-emc-date: Wed, 18 Feb 2009 16:33:09 GMT
host: 168.159.116.96
x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1
x-emc-signature: s7965CmZ956v9KY8UHmaipS/c/E=

Response

HTTP/1.1 200 OK
Date: Wed, 18 Feb 2009 16:33:09 GMT
Server: Apache
x-emc-groupacl: other=NONE
x-emc-useracl: fred=FULL_CONTROL, john=FULL_CONTROL,mary=READ,

user1=FULL_CONTROL
Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8
x-emc-policy: _int

Namespace interface examples

Request

GET /rest/namespace/photos/mypicture.jpg?acl HTTP/1.1 accept: */*
date: Wed, 18 Feb 2009 16:33:44 GMT
content-type: application/octet-stream
x-emc-date: Wed, 18 Feb 2009 16:33:44 GMT
host: 168.159.116.96
x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1 x-emc-signature:

9Yp9xxo8yt2g6QdVE+CQN5NoEow=
84 EMC Atmos Version 2.4 Programmer’s Guide

REST API Reference
Response

HTTP/1.1 200 OK
Date: Wed, 18 Feb 2009 16:33:44 GMT
Server: Apache
x-emc-groupacl: other=NONE x-emc-useracl: fred=FULL_CONTROL,

john=FULL_CONTROL, mary=READ, user1=FULL_CONTROL
Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8
x-emc-policy: _int

Getting listable tags
Retrieves a user’s listable tags. Use the “x-emc-tags” header to specify the tags to retrieve.
The listable tags are returned as a comma-separated list on the “x-emc-listable-tags”
header.

To get:

• All top-level listable tags, omit the “x-emc-tags” header on the request.

• The tags within a hierarchy, specify the tag name (including path) within the
“x-emc-tags” header.

If the response includes the “x-emc-token” header, it means that there might be more tags
to retrieve. To request the next set of tags, pass the value of the “x-emc-token” header in
subsequent requests.When the “x-emc-token” header is not included in the response, it
means that you have retrieved the full set of tags. For more information, see the
“x-emc-token example” on page 86.

Permissions

Any UID within the same subtenant can perform this operation.

HTTP method

GET

Object interface URI

/rest/objects?listabletags

Namespace interface URI

/rest/namespace?listabletags

Request parameters

Required:

• “x-emc-date”or “Date”

• “x-emc-signature”

• “x-emc-uid”

Optional:
Getting listable tags 85

REST API Reference
• “x-emc-tags”

• “x-emc-token”

• “x-emc-utf8” (if the tag name/value pairs are in Unicode format).

Object interface examples

• “Get top-level tags”

• “x-emc-token example”

Get top-level tags
In this example, the request retrieves all of the listable tags that are defined under the
top-level tag called continent. They are returned in the response on the
“x-emc-listable-tags” header.

Request

GET /rest/objects?listabletags HTTP/1.1
accept: */*
date: Wed, 18 Feb 2009 16:35:01 GMT
content-type: application/octet-stream
x-emc-date: Wed, 18 Feb 2009 16:35:01 GMT
x-emc-tags: continent
host: 168.159.116.96
x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1
x-emc-signature: 1OoKOJo9xoheuY1TFhp0xOHlPks=

Response

HTTP/1.1 200 OK
Date: Wed, 18 Feb 2009 16:35:01 GMT
Server: Apache
x-emc-listable-tags:asia, africa, australia, antarctica
Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8
x-emc-policy: _int

x-emc-token example
The following example shows how to use the “x-emc-token” header. The request asks for
all of the sub-tags under the pictures/vacation tag specified by the“x-emc-tags” header.

Request 2

GET /rest/objects?listabletags HTTP/1.1
date: Fri, 16 Apr 2010 17:15:19 GMT
x-emc-date: Fri, 16 Apr 2010 17:15:19 GMT
x-emc-tags: pictures/vacation
x-emc-uid: f6639b0790634733bdf56e1223908224/user1
x-emc-signature: MSeOcmDQzcJkQIc/iy7NQXmndN0=

Response 2

This response includes the “x-emc-token” header to indicate there are more results.

HTTP/1.1 200 OK
Date: Fri, 16 Apr 2010 17:15:19 GMT
Server: Apache
x-emc-policy: _int
x-emc-token: 4bb5fa58a1a8482004bb5faf0d12f804bc89a4c5ddb7
86 EMC Atmos Version 2.4 Programmer’s Guide

REST API Reference
x-emc-listable-tags: boston, newyork, chicago, miami, losangeles,
sandiego, sanfrancisco, paris, london, rome

Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8

To continue retrieving the tags under pictures/vacation, include the “x-emc-token” in the
subsequent request.

Request 2a

This requests the next set of tags under pictures/vacation. It includes the
“x-emc-token” with a value of 4bb5fa58a1a8482004bb5faf0d12f804bc89a4c5ddb7
from the previous response.

GET /rest/objects?listabletags HTTP/1.1
x-emc-token: 4bb5fa58a1a8482004bb5faf0d12f804bc89a4c5ddb7
date: Fri, 16 Apr 2010 17:15:29 GMT
x-emc-date: Fri, 16 Apr 2010 17:15:29 GMT
x-emc-tags: pictures/vacation
x-emc-uid: f6639b0790634733bdf56e1223908224/user1
x-emc-signature: U8/d6IWL2fa/gfsWPXXSHdM06GM=

Response 2a

This response returns the next set of tags. It is also the final set of tags as indicated by the
absence of the “x-emc-token” header in the response.

HTTP/1.1 200 OK
Date: Fri, 16 Apr 2010 17:15:29 GMT
Server: Apache
x-emc-policy: _int
x-emc-listable-tags: sydney, athens, barcelona, milan, madrid
Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8

Namespace interface examples

Request

GET /rest/namespace?listabletags
accept: */*
date: Wed, 18 Feb 2009 16:35:01 GMT
content-type: application/octet-stream
x-emc-date: Wed, 18 Feb 2009 16:35:01 GMT
x-emc-tags: part4
host: 168.159.116.96
x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1
x-emc-signature: 1OoKOJo9xoheuY1TFhp0xOHlPks=

Response

HTTP/1.1 200 OK
Date: Wed, 18 Feb 2009 16:35:01 GMT
Server: Apache
x-emc-listable-tags: part7, part9
Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8
x-emc-policy: _int
Getting listable tags 87

REST API Reference
Getting object info
Returns details about the replicas for an object. Performing this operation on a directory
returns error code 1022 because directories do not have storage.

Permissions

Any UID within the same subtenant can perform this operation.

HTTP method

GET

Object interface URI

/rest/objects/objectid?info

Namespace interface URI

/rest/namespace/pathname/myfile?info

Request parameters

Required:

• “x-emc-date”or “Date”

• “x-emc-signature”

• “x-emc-uid”

Object interface examples

Request

GET /rest/objects/4b00fffea12059c104b00ffca1f8e804b040c4d911c9?info
HTTP/1.1

Host: 10.32.89.193
accept:*/*
date:Fri, 20 Nov 2009 05:47:29 GMT
content-type:application/octet-stream
x-emc-date:Fri, 20 Nov 2009 05:47:29 GMT
x-emc-uid:e103f726a87d45abbd8d5f189a8cecfc/aaa
x-emc-signature:u/kFWYGR2Uf1/xpIikY/nBAeFXg=

Response

HTTP/1.1 200 OK
Date: Fri, 20 Nov 2009 05:47:29 GMT
Server: Apache
x-emc-policy: _int
Content-Length: 723
Connection: close
Content-Type: text/xml

<?xml version='1.0' encoding='UTF-8'?>
<GetObjectInfoResponse xmlns='http://www.emc.com/cos/'>
<objectId>4b00fffea12059c104b00ffca1f8e804b040c4d911

c9</objectId>
88 EMC Atmos Version 2.4 Programmer’s Guide

REST API Reference
<selection></selection>
<numReplicas>2</numReplicas>
<replicas>

<replica>
<id>3</id>
<type>sync</type>
<current>true</current>
<location>Boston</location>
<storageType>Normal</storageType>

</replica>
<replica>

<id>5</id>
<type>sync</type>
<current>true</current>
<location>Boston</location>
<storageType>Normal</storageType>

</replica>
</replicas>
<retention>
<enabled>false</enabled>
<endAt></endAt>

</retention>
<expiration>

<enabled>false</enabled>
<endAt></endAt>

</expiration>
</GetObjectInfoResponse>

Namespace interface examples

Request

GET /rest/namespace/photos/mypicture.jpg?info HTTP/1.1
accept: */
date: Thu, 07 Jan 2010 15:33:00 GMT
content-type: application/octet-stream
x-emc-date: Thu, 07 Jan 2010 15:33:00 GMT
x-emc-uid: e2f3a3f5e3aa4a2d91f532415405d6d3/user1
x-emc-signature: HMcVH8Sf7ciX8qhRPjiSknC0doE=

Response

HTTP/1.1 200 OK
Date: Thu, 07 Jan 2010 15:33:00 GMT
Server: Apache
x-emc-policy: _int
Content-Length: 729
Connection: close
Content-Type: text/xml

<?xml version='1.0' encoding='UTF-8'?>
<GetObjectInfoResponse xmlns='http://www.emc.com/cos/'>

<objectId>4b4502a5a2a8482004b4503232663404b45fe98a5e
c1</objectId>

<selection>geographic</selection>
<numReplicas>2</numReplicas>

<replicas>
<replica>

<id>3</id>
<type>sync</type>
<current>true</current>
<location>cambridge</location>
<storageType>Normal</storageType>

</replica>
<replica>
Getting object info 89

REST API Reference
<id>5</id>
<type>sync</type>
<current>true</current>
<location>cambridge</location>
<storageType>Normal</storageType>

</replica>
</replicas>

<retention>
<enabled>false</enabled>
<endAt></endAt>

</retention>
<expiration>

<enabled>false</enabled>
<endAt></endAt>

</expiration>
</GetObjectInfoResponse>

Table 19 Response XML Elements

XML Element Description

objectId String. The object’s unique identifier.

selection String. The replica selection for read access. Values can be
geographic or random.

numReplicas Integer. The total number of replicas for this object.

Replicas Container for set of replica definitions.

Replica Container for a replica instance.

replica ID String. The unique identifier for the replica instance.

type String. The replica type. Values can be sync or async.

current Boolean. True if the replica is current, or False if the replica is not
current.

location String. The replica location.

storage type String. The replica’s storage type. Values can be stripe, normal,
cloud, compression, ErasureCode for GeoParity replicas, and dedup.

retention Container element for retention values.

enabled A Boolean value (true/false) that defines whether retention is
enabled for the replica.

endAt When enabled is true, specifies the dateTime when the data
retention period expires. When enabled is false, this element is
empty.
dateTime has this format:
YYYY— year
MM—month
DD — day
hh — hour
mm — minute
ss — second
90 EMC Atmos Version 2.4 Programmer’s Guide

REST API Reference
Getting service information
Returns the version of Atmos software in use in the following form:

major.minor.servicepack.patch.

For example:

2.1.4.0

Also lists the features supported by the version on the x-emc-features header and the
authentication method (sensitive or case-insensitive) specified by the x-emc-auth-ver
header.

Permissions

No special permissions required.

HTTP method

GET

URI

/rest/service

Request parameters

Required:

• “x-emc-date”or “Date”

• “x-emc-signature”

• “x-emc-uid”

expiration Container element for expiration values.

enabled A Boolean value that specifies if expiration is enabled (true) or not
(false)

endAt When enabled is true, specifies the dateTime at when the deletion
expiration ends. When enabled is false, this element is empty.
dateTime has this format:
YYYY— year
MM—month
DD — day
hh — hour
mm — minute
ss — second

Table 19 Response XML Elements

XML Element Description
Getting service information 91

REST API Reference
Examples

Request

GET /rest/service HTTP/1.1
Connection: Keep-Alive
Date: Tue, 01 Oct 2013 18:15:21 GMT
Accept: */*
Host: 10.5.116.244
x-emc-date: Tue, 01 Oct 2013 18:15:21 GMT
x-emc-uid: 0e2997b7dc1940eda38270155e2f3136/test
x-emc-signature: mHQZTbVaCdRUKh8ijQRXDJRAhe0=

Response

HTTP/1.1 200 OK
Date: Tue, 01 Oct 2013 18:15:18 GMT
Server: Apache
x-emc-policy: _int
Content-Length: 140
x-emc-support-utf8: true
x-emc-features: object, namespace, utf-8, browser-compat, versioning
x-emc-auth-ver: 2
Connection: close
Content-Type: text/xml

<?xml version='1.0' encoding='UTF-8'?>
<Service xmlns='http://www.emc.com/cos/'>
<Version>
<Atmos>2.1.5.0</Atmos>
</Version>
</Service>

Getting system metadata
Returns the system metadata for the specified object. To get:

• A subset of system metadata, specify the tag names in a comma-separated list on the
“x-emc-tags” header on the request.

• All of the object’s system metadata, omit the “x-emc-tags” in the request.

If the object was created with a checksum, the “x-emc-wschecksum” header is returned in
the response.

If the metadata tags that you pass in this request are Unicode, you must percent-encode
the data before submitting the request, and include the “x-emc-utf8” header on the
request. Atmos will percent-encode the values that it returns.

To learn more about system metadata tags, see “Example: Creating an object with
non-listable user metadata” on page 24.

Permissions

Any UID within the same tenant can perform this operation.

HTTP method

GET
92 EMC Atmos Version 2.4 Programmer’s Guide

REST API Reference
Object interface URI

/rest/objects/<objectID>?metadata/system

Namespace interface URI

/rest/namespace/<pathname>?metadata/system

Request parameters

Required:

• “x-emc-date”or “Date”

• “x-emc-signature”

• “x-emc-uid”

• “x-emc-utf8” (only required metadata values are in Unicode.)

Optional:

• “x-emc-tags”

Object interface examples

• “Get all system metadata”

• “Get a subset of system metadata”

Get all system metadata
In this example, the “x-emc-tags” header is omitted, so all system-metadata pairs are
returned (in the “x-emc-meta” header). In the response, objname is blank because this
object does not have a name.

Request

GET
/rest/objects/499ad542a1a8bc200499ad5a6b05580499c3168560a4?metadata
/system HTTP/1.1

accept: */*
date: Wed, 18 Feb 2009 16:36:18 GMT
content-type: application/octet-stream
x-emc-date: Wed, 18 Feb 2009 16:36:18 GMT
host: 168.159.116.96
x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1
x-emc-signature: 2FqzIvlzmGahV6/4KUWzBANkrFc=

Response

HTTP/1.1 200 OK
Date: Wed, 18 Feb 2009 16:36:18 GMT
Server: Apache
x-emc-meta: atime=2009-02-18T16:27:24Z, mtime=2009-02-18T16:03:52Z,

ctime=2009-02-18T16:27:24Z, itime=2009-02-18T16:03:52Z,
type=regular, uid=user1, gid=apache,
objectid=499ad542a1a8bc200499ad5a6b05580499c3168560a4, objname=,
size=211, nlink=0, policyname=default

Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8
Getting system metadata 93

REST API Reference
x-emc-policy: _int

Get a subset of system metadata

In this example, the “x-emc-tags”s header includes two tags, atime and uid, so only those
system-metadata pairs are returned.

Request

GET
/rest/objects/499ad542a1a8bc200499ad5a6b05580499c3168560a4?metadata
/system HTTP/1.1

accept: */*
date: Wed, 18 Feb 2009 16:36:18 GMT
content-type: application/octet-stream
x-emc-date: Wed, 18 Feb 2009 16:36:18 GMT
x-emc-tags: atime,uid
host: 168.159.116.96
x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1
x-emc-signature: 2FqzIvlzmGahV6/4KUWzBANkrFc=

Response

HTTP/1.1 200 OK
Date: Wed, 18 Feb 2009 16:36:18 GMT
Server: Apache
x-emc-meta: atime=2009-02-18T16:27:24Z, uid=user1
Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8
x-emc-policy: _int

Request metadata for object with Unicode objname
In this example, the objname of the associated object is in Unicode, so the request must
include the x-emc-utf8:true header. Atmos percent-encodes the objname.

Request

GET
/rest/objects/4ef49feaa106904c04ef4a066e778104f071a5ff0c85?metadata
/system HTTP/1.1

date: Fri, 06 Jan 2012 16:32:42 GMT
content-type: application/octet-stream
x-emc-date: Fri, 06 Jan 2012 16:32:42 GMT
x-emc-utf8: true
x-emc-uid: 071464e3e8fb4cce8609a623fd9df025/user1
x-emc-signature: ZQReJ4DrvynvjPv+hQ5B3ZW/Yfk=

Response

HTTP/1.1 200 OK
Date: Fri, 06 Jan 2012 16:32:42 GMT
Server: Apache
x-emc-policy: _int
x-emc-utf8: true
x-emc-meta: atime=2012-01-06T16:16:00Z, mtime=2012-01-06T15:59:28Z,

ctime=2012-01-06T16:16:00Z, itime=2012-01-06T15:59:27Z,
type=regular, uid=user1, gid=apache,

objectid=4ef49feaa106904c04ef4a066e778104f071a5ff0c85,
objname=%cf%85%cf%80%ce%bf%ce%bb%ce%bf%ce%b3%ce%b9%cf%83%cf%84%ce%a
e.jpg, size=459, nlink=1, policyname=default

Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8
94 EMC Atmos Version 2.4 Programmer’s Guide

REST API Reference
Request metadata for object with Unicode objname without using x-emc-utf8 header
In this example, the objname of the associated object is in Unicode, but the request does
not include the x-emc-utf8:true header. In this case, Atmos does not percent-encode the
objname, so the response returns the x-emc-unencodable-meta header with the name of
the field (objname) that it was not able to return.

Request

GET
/rest/objects/4ef49feaa106904c04ef4a066e778104f071a5ff0c85?metadata
/system HTTP/1.1

date: Fri, 06 Jan 2012 16:31:41 GMT
content-type: application/octet-stream
x-emc-date: Fri, 06 Jan 2012 16:31:41 GMT
x-emc-uid: 071464e3e8fb4cce8609a623fd9df025/user1
x-emc-signature: K2uM592a2z9RHBFPL83klmS0U3w=

Response

HTTP/1.1 200 OK
Date: Fri, 06 Jan 2012 16:31:41 GMT
Server: Apache
x-emc-policy: _int
x-emc-meta: atime=2012-01-06T16:16:00Z, mtime=2012-01-06T15:59:28Z,

ctime=2012-01-06T16:16:00Z, itime=2012-01-06T15:59:27Z,
type=regular, uid=user1,

 gid=apache, objectid=4ef49feaa106904c04ef4a066e778104f071a5ff0c85,
size=459, nlink=1, policyname=default

x-emc-unencodable-meta: objname
Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8

Namespace interface examples

Request

GET /rest/namespace/dir561/file14.txt?metadata/system HTTP/1.1
accept: */*

date: Mon, 05 Jul 2010 19:51:30 GMT
content-type: application/octet-stream
x-emc-date: Mon, 05 Jul 2010 19:51:30 GMT
host: 168.159.116.112:2345
x-emc-uid: ebd858f829114dfabbcf069637a07cfe/user1
x-emc-signature: vMyNLeg/ja208OwCPYlwjMt/MW4=

Response

HTTP/1.1 200 OK
Date: Mon, 05 Jul 2010 19:51:30 GMT
Server: Apache
x-emc-policy: _int
x-emc-meta: atime=2010-07-05T19:51:19Z, mtime=2010-07-05T19:51:19Z,

ctime=2010-07-05T19:51:19Z, itime=2010-07-05T19:51:19Z,
type=regular, uid=user1, gid=apache,
objectid=4bf520e2a105737304bf52170a4e6204c3237b7c1b16,
objname=test14.txt4, size=1037, nlink=1, policyname=default

x-emc-wschecksum: sha0/1037/87hn7kkdd9d982f031qwe9ab224abjd6h1276nj9
Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8
Getting system metadata 95

REST API Reference
Getting user metadata
Returns the user metadata associated with the specified object. To request:

• One or more user metadata tags, pass the tag names on the “x-emc-tags” header.
When specifying more than one, supply the tag names in a comma-separated list.

• All user metadata, omit the “x-emc-tags”.

Listable metadata is returned on the “x-emc-listable-meta” header, and non-listable
metadata is returned on the “x-emc-meta” header.

If the metadata tags that you pass in this request are in Unicode format, you must:

• Percent-encode the data before submitting the request

• Include the “x-emc-utf8” header on the request

Atmos will percent-encode the values that it returns.

Permissions

Read permissions

HTTP method

GET

Object interface URI

/rest/objects/<objectID>?metadata/user

Namespace interface URI

/rest/namespace/<pathname>?metadata/user

Request parameters

Required:

• “x-emc-date”or “Date”

• “x-emc-signature”

• “x-emc-uid”

• “x-emc-utf8” (only required when the x-emc-path data is in Unicode format)

Optional:

• “x-emc-tags”

Object interface examples

• “Request non-listable user metadata”

• “Request listable user metadata”

• “Request all user metadata”
96 EMC Atmos Version 2.4 Programmer’s Guide

REST API Reference
• “Request user metadata in Unicode”

Request non-listable user metadata
This example retrieves the user metadata tags, city and state, by passing them on the
“x-emc-tags” header. Atmos returns the tags and their values on the “x-emc-meta” header
in the response.

Request

GET
/rest/objects/4dc19958a10574f404dc199e64fc7204dcbdf1e02269?metadata
/user HTTP/1.1

accept: */*
date: Thu, 12 May 2011 13:53:24 GMT
content-type: application/octet-stream
x-emc-date: Thu, 12 May 2011 13:53:24 GMT
x-emc-tags: city,state
host: 10.238.112.140:1234
x-emc-uid: 66371ac3bd8148348c0f3f1545e2da69/test-uid
x-emc-signature: 24kFFIxX8DqRUPv8Ca/n+7KFRUw=

Response

HTTP/1.1 200 OK
Date: Thu, 12 May 2011 13:53:27 GMT
Server: Apache
x-emc-policy: _int
x-emc-meta: city=boston, state=MA
Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8

Request listable user metadata
This example requests the listable user metadata tag, color, by passing it in on the
“x-emc-tags” header. Atmos returns the listable user metadata tag and its value on the
“x-emc-listable-meta”in the response.

Request

GET
/rest/objects/4dc19958a10574f404dc199e64fc7204dcbdf1e02269?metadata
/user HTTP/1.1

accept: */*
date: Thu, 12 May 2011 13:53:04 GMT
content-type: application/octet-stream
x-emc-date: Thu, 12 May 2011 13:53:04 GMT
x-emc-tags: color
host: 10.238.112.140:1234
x-emc-uid: 66371ac3bd8148348c0f3f1545e2da69/test-uid
x-emc-signature: r/ht0y2f+WDeYDpsVJ40JRRVG1Y=

Response

HTTP/1.1 200 OK
Date: Thu, 12 May 2011 13:53:08 GMT
Server: Apache
x-emc-policy: _int
x-emc-listable-meta: color=blue
Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8
Getting user metadata 97

REST API Reference
Request all user metadata
This request omits the “x-emc-tags” header so all of the object’s user metadata tags are
returned. Listable metadata is returned on the “x-emc-listable-meta” header, and
non-listable metadata is returned on the “x-emc-meta” header.

Request

GET
/rest/objects/4dc19958a10574f404dc199e64fc7204dcbdf1e02269?metadata
/user HTTP/1.1

accept: */*
date: Thu, 12 May 2011 13:48:02 GMT
content-type: application/octet-stream
x-emc-date: Thu, 12 May 2011 13:48:02 GMT
host: 10.238.112.140:1234
x-emc-uid: 66371ac3bd8148348c0f3f1545e2da69/test-uid
x-emc-signature: xtzLToS1M6Jg8AInhZsAZi1D2ck=

Response

HTTP/1.1 200 OK
Date: Thu, 12 May 2011 13:48:06 GMT
Server: Apache
x-emc-policy: _int
x-emc-meta: city=boston, state=ma
x-emc-listable-meta: color=blue
Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8

Request user metadata in Unicode
This request omits the “x-emc-tags” header so all of the object’s user metadata tags are
returned. Listable metadata is returned on the “x-emc-listable-meta” header, and
non-listable metadata is returned on the “x-emc-meta” header.

Because the request includes the “x-emc-utf8” header, Atmos percent-encodes the values
returned on the “x-emc-listable-meta” and “x-emc-meta” headers.

Request

GET
/rest/objects/4ef49feaa106904c04ef4a066e778104f071a5ff0c85?metadata
/user HTTP/1.1

date: Fri, 06 Jan 2012 16:43:03 GMT
content-type: application/octet-stream
x-emc-date: Fri, 06 Jan 2012 16:43:03 GMT
x-emc-utf8: true
x-emc-uid: 071464e3e8fb4cce8609a623fd9df025/user1
x-emc-signature: nwwPnmAVEgjF4ycYtWDULWTlYPk=

Response

HTTP/1.1 200 OK
Date: Fri, 06 Jan 2012 16:43:03 GMT
Server: Apache
x-emc-policy: _int
x-emc-utf8: true
x-emc-meta: %cf%87%cf%81%cf%8e%ce%bc%ce%b1=%ce%bc%cf%80%ce%bb%ce%b5,

%ce%bc%ce%ad%ce%b3%ce%b5%ce%b8%ce%bf%cf%82=%ce%bc%ce%b9%ce%ba%cf%81
%cf%8c
98 EMC Atmos Version 2.4 Programmer’s Guide

REST API Reference
x-emc-listable-meta:
%cf%80%ce%b5%cf%81%ce%b9%ce%bf%cf%87%ce%ae=%ce%b2%cf%8c%cf%81%ce%b5
%ce%b9%ce%b1

Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8

Namespace interface examples

This request omits the “x-emc-tags” header so all of the object’s user metadata tags are
returned. Listable metadata is returned on the “x-emc-listable-meta” header, and
non-listable metadata is returned on the “x-emc-meta” header.

Request

GET /rest/namespace/photos/mypicture.jpg?metadata/user HTTP/1.1
accept: */*
date: Wed, 18 Feb 2009 16:38:14 GMT
content-type: application/octet-stream
x-emc-date: Wed, 18 Feb 2009 16:38:14 GMT
host: 168.159.116.96:8080
x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1
x-emc-signature: jhqNQwPrKjc9RpjKmops3fKw+l8=

Response

HTTP/1.1 200 OK
Date: Wed, 18 Feb 2009 16:38:14 GMT
Server: Apache
x-emc-listable-meta: part4/part7/part8=quick, part3=fast
x-emc-meta: part1=order
Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8
x-emc-policy: _int
Getting user metadata 99

REST API Reference
Listing access tokens
Returns the set of access tokens available for use by a specific UID.

HTTP Method

GET

Object interface URI

/rest/accesstokens

Request parameters

Required:

• “x-emc-uid”

• “x-emc-signature”

• “x-emc-date”

Optional:

• “x-emc-token”

• “x-emc-limit”

Object interface examples

Request

GET /rest/accesstokens HTTP/1.1
accept: */*
date: Wed, 18 Nov 2011 14:02:00 GMT
x-emc-date: Wed, 18 Feb 2009 16:03:52 GMT
host: 168.159.116.96
x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1
x-emc-signature: KpT+3Ini1W+CS6YwJEAWYWvIlIs=

Response header

HTTP/1.1 200 OK
Date: Wed, 18 Nov 2011 14:02:00 GMT
Server: Apache
Content-Length: 310
Connection: close
Content-Type: text/xml; charset=UTF-8
100 EMC Atmos Version 2.4 Programmer’s Guide

REST API Reference
Response body

<?xml version="1.0" encoding="UTF-8"?>
<list-access-tokens-result>
<access-tokens-list>
<access-token>
<access-token-id>4ef1ed17a1a8000f04ef1ed776c0f104f15bef991f92</Acce
ssTokenID>
<expiration>2011-12-01T12:00:00.000Z</expiration>
<max-uploads>1</max-uploads>
<source>

<allow>127.0.0.0/24</allow>
</source>
<content-length-range from="10" to="11000"/>
</access-token>
<access-token>
<access-token-id>4ef1ed17a1a8000f04ef1ed776c0f104f15bef98f36a</Acce
ssTokenID>
<expiration>2012-01-01T12:00:00.000Z</expiration>
<max-uploads>1</max-uploads>
<max-downloads>32768</max-uploads>
<source>

<allow>192.168.0.0</allow>
</source>
<content-length-range from="10" to="11000"/>
</access-token>

</access-tokens-list>
</list-access-tokens-result>

Table 20 describes the XML elements of the response document.

Table 20 Response body elements (page 1 of 2)

Element Description

list-access-tokens-result Container element for the response document.

access-tokens-list Container element for the collection of access tokens.

access-token Container element for the details of a specific access token.

access-token-id The identifier for a specific access token.

expiration The expiration date of the access token’s policy. In ISO8601
format.

max-uploads The maximum number of times that the same token can be used
for uploading a file.

max-downloads The maximum number of times the same token can be used to
download a file.

source Container element for the set of rules that define where uploads
can come from.

source/allow An IP address or group of addresses in CIDR format from which user
can access given access token.

source/deny An IP address or group of addresses in CIDR format from which user
can not access given access token.

content-length-range Specifies the minimum and maximum size of uploaded content (in
bytes).

form-field form field validation for uploads. See “About the access token
policy document” on page 38.
Listing access tokens 101

REST API Reference
Listing objects
Retrieves all object IDs indexed by a tag. You can specify only one tag name/hierarchy on
each operation.

To get:

• No metadata in the response, omit the “x-emc-include-meta” or set it to 0 or false on
the request.

• All system and user metadata in the response, set “x-emc-include-meta” to 1 or true.

• A subset of metadata, pass in the tag names on as a comma-separated list on the
“x-emc-system-tags” and “x-emc-user-tags”. Use “x-emc-utf8” set to true when the
“x-emc-system-tags” or “x-emc-user-tags” are in Unicode.

By default, the response contains an XML document listing the object IDs that meet the
criteria. Use “x-emc-accept” to specify a different format.

Object IDs are 44 characters long. There is no limit to how many objects you can store;
therefore, it is possible to reach the limit for data in the HTTP header. As a result, the
operation returns the object IDs from a list-objects operation into the XML body, not the
header.

Listable tags are created in a user’s own namespace, they are private to that user. Only
objects belonging to the requesting UID are returned.

Permissions

No special permissions apply.

HTTP method

GET

Object interface URI

/rest/objects

Namespace interface URI

Not supported

path The namespace path of the target object for the access token.

object-id The object ID of the target object for the access token.

useracl The user ACL for uploaded objects. See the response examples in
“Getting an ACL” on page 83.

groupacl The group ACL for uploaded objects. See the response examples in
“Getting an ACL” on page 83.

Table 20 Response body elements (page 2 of 2)

Element Description
102 EMC Atmos Version 2.4 Programmer’s Guide

REST API Reference
Request parameters

Required:

• “x-emc-date”or “Date”

• “x-emc-signature”

• “x-emc-uid”

• “x-emc-utf8” (only required if the request includes metadata tags in Unicode format).

Optional:

• “x-emc-include-meta”

• “x-emc-system-tags”

• “x-emc-tags”

• “x-emc-user-tags”

• “x-emc-accept”

Object interface examples

This section includes the following examples:

• “List object IDs — No metadata”

• “List objects — Using the x-emc-limit header”

• “List objects — All metadata”

• “List objects — Selected metadata”

• “List objects — with Unicode tag names”

List object IDs — No metadata
This example retrieves object IDs — without metadata by setting the “x-emc-include-meta”
header to 0.

Request

GET /rest/objects HTTP/1.1
accept: */*
date: Wed, 18 Feb 2009 16:39:49 GMT
content-type: application/octet-stream
x-emc-date: Wed, 18 Feb 2009 16:39:49 GMT
x-emc-tags: part4/part7/part8
host: 168.159.116.96
x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1
x-emc-signature: ZllFtIyYe6kvqibS9eqcIBpiQ7I=
x-emc-include-meta: 0

Response

HTTP/1.1 200 OK
Date: Wed, 18 Feb 2009 16:39:49 GMT
Server: Apache
Content-Length: 359
Connection: close

Content-Type: text/xml
Listing objects 103

REST API Reference
x-emc-policy: _int
<?xml version='1.0' encoding='UTF-8'?>
<ListObjectsResponse xmlns='http://www.emc.com/cos/'>
<Object>
<ObjectID>499ad542a2a8bc200499ad5a7099940499b44f51e97d

</ObjectID>
</Object>
<Object>
<ObjectID>499ad542a1a8bc200499ad5a6b05580499b44f5aff04
</ObjectID>
</Object>

<Object>
<ObjectID>499ad542a2a8bc200499ad5a7099940499b44f779a5

4</ObjectID>
</Object>

</ListObjectsResponse>

List objects — Using the x-emc-limit header
In this example, the user requests up to 50 objects.

• The first request does not include an “x-emc-token” identifier, so data retrieval starts
with the first object available.

• In the first response, objects 1-50 are returned, along with an “x-emc-token” identifier.
That identifier is specified in the second request, as the starting point for data
retrieval.

• In the second response, objects 51-100 are returned, along with another
“x-emc-token” identifier. That second identifier is specified in the third request, as the
starting point for data retrieval.

• In the third response, the final 25 objects are returned. This final response does not
include an “x-emc-token” identifier, because there are no more objects to be
retrieved.

Request 1

GET /rest/objects HTTP/1.1
accept: */*
x-emc-limit: 50
date: Fri, 15 May 2009 14:50:13 GMT
content-type: application/octet-stream
x-emc-date: Fri, 15 May 2009 14:50:13 GMT
x-emc-tags: part1
host: 127.0.0.1
x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1
x-emc-signature: v+OUztaBdCqIPO/0p/FyXnosHXc=
x-emc-include-meta: 0

Response 1

HTTP/1.1 200 OK
Date: Fri, 15 May 2009 14:50:13 GMT
Server: Apache
x-emc-token:
4a0d6e22a2a8482004a0d6ecd85daf04a0d733b28892
Content-Length: 332
Connection: close
Content-Type: text/xml
x-emc-policy: _int
<?xml version='1.0' encoding='UTF-8'?>
<ListObjectsResponse xmlns='http://www.emc.com/cos/'>
<Object>
104 EMC Atmos Version 2.4 Programmer’s Guide

REST API Reference
<ObjectID>4a0d6e22a1a8482004a0d6ecd1247804a0d7337c
89fd

</ObjectID>
</Object>
<Object>

<ObjectID>4a0d6e22a2a8482004a0d6ecd85daf04a0d73390
2a93</ObjectID>

</Object>
</ListObjectsResponse>

Request 2

GET /rest/objects HTTP/1.1
x-emc-token: 4a0d6e22a2a8482004a0d6ecd85daf04a0d733b28892
accept: */*
x-emc-limit: 50
date: Fri, 15 May 2009 14:50:39 GMT
content-type: application/octet-stream
x-emc-date: Fri, 15 May 2009 14:50:39 GMT
x-emc-tags: part1
host: 127.0.0.1
x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1
x-emc-signature: ozaUkr9upED4iktYlu6KQWgH+v0=
x-emc-include-meta: 0

Response 2

HTTP/1.1 200 OK
Date: Fri, 15 May 2009 14:50:39 GMT
Server: Apache
x-emc-token:
4a0d6e22a2a8482004a0d6ecd85daf04a0d733df3eea
Content-Length: 332
Connection: close
Content-Type: text/xml
x-emc-policy: _int
<?xml version='1.0' encoding='UTF-8'?>
<ListObjectsResponse xmlns='http://www.emc.com/cos/'>

<Object>
<ObjectID>4a0d6e22a2a8482004a0d6ecd85daf04a0d733b2

8892</ObjectID>
</Object>
<Object>

<ObjectID>4a0d6e22a1a8482004a0d6ecd1247804a0d733c
19b14</ObjectID>

</Object>
</ListObjectsResponse>

Request 3

GET /rest/objects HTTP/1.1
x-emc-token: 4a0d6e22a2a8482004a0d6ecd85daf04a0d733df3eea
accept: */*
x-emc-limit: 50
date: Fri, 15 May 2009 14:50:56 GMT
content-type: application/octet-stream
x-emc-date: Fri, 15 May 2009 14:50:56 GMT
x-emc-tags: part1
host: 127.0.0.1
x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1
x-emc-signature: 12i2hiJdtosuJsNei2y6BtwN+t4=
x-emc-include-meta: 0

Response 3

HTTP/1.1 200 OK
Listing objects 105

REST API Reference
Date: Fri, 15 May 2009 14:50:56 GMT
Server: Apache
Content-Length: 332
Connection: close
Content-Type: text/xml
x-emc-policy: _int
<?xml version='1.0' encoding='UTF-8'?>
<ListObjectsResponse xmlns='http://www.emc.com/cos/'>

<Object>
<ObjectID>4a0d6e22a2a8482004a0d6ecd85daf04a0d733d

f3eea</ObjectID>
</Object>
<Object>

<ObjectID>4a0d6e22a2a8482004a0d6ecd85daf04a0d733e
b2d85</ObjectID>

</Object>
</ListObjectsResponse>

List objects — All metadata
The “x-emc-include-meta” header, set to 1, indicates that an object list should be returned
with all system and user metadata for each object.

Request

GET /rest/objects HTTP/1.1
accept: */*
date: Wed, 18 Feb 2009 16:41:02 GMT
content-type: application/octet-stream
x-emc-date: Wed, 18 Feb 2009 16:41:02 GMT
x-emc-tags: part4/part7/part8
host: 168.159.116.96
x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1
x-emc-signature: hEf+WgX/0HLo6zoQKalo6sB/kt0=
x-emc-include-meta: 1

Response

HTTP/1.1 200 OK
Date: Wed, 18 Feb 2009 16:41:02 GMT
Server: Apache
Connection: close
Transfer-Encoding: chunked
Content-Type: text/plain; charset=UTF-8
x-emc-policy: _int
<?xml version='1.0' encoding='UTF-8'?>
<ListObjectsResponse xmlns='http://www.emc.com/cos/'>
<Object>
<ObjectID>499ad542a2a8bc200499ad5a7099940499b44f51e97d

</ObjectID>
<SystemMetadataList>
<Metadata>
<Name>atime</Name>
<Value>2009-02-17T23:15:01Z</Value>

</Metadata>
<Metadata>
<Name>mtime</Name>
<Value>2009-02-17T23:15:01Z</Value>

</Metadata>
<Metadata>
<Name>ctime</Name>
<Value>2009-02-17T23:15:01Z</Value>

</Metadata>
<Metadata>
<Name>itime</Name>
<Value>2009-02-17T23:15:01Z</Value>
106 EMC Atmos Version 2.4 Programmer’s Guide

REST API Reference
</Metadata>
<Metadata>
<Name>type</Name>
<Value>regular</Value>

</Metadata>
<Metadata>
<Name>uid</Name>
<Value>user1</Value>

</Metadata>
<Metadata>
<Name>gid</Name>
<Value>apache</Value>

</Metadata>
<Metadata>
<Name>objectid</Name>
<Value>499ad542a2a8bc200499ad5a7099940499b44f51e97

 d</Value>
</Metadata>
<Metadata>
<Name>objname</Name>
<Value></Value>

</Metadata>
<Metadata>
<Name>size</Name>
<Value>7589</Value>

</Metadata>
<Metadata>
<Name>nlink</Name>
<Value>0</Value>

</Metadata>
<Metadata>
<Name>policyname</Name>
<Value>default</Value>

</Metadata>
</SystemMetadataList>
<UserMetadataList>
<Metadata>
<Name>part1</Name>
<Value>order</Value>
<Listable>false</Listable>

</Metadata>
<Metadata>
<Name>part4/part7/part8</Name>
<Value>quick</Value>
<Listable>true</Listable>

</Metadata>
</UserMetadataList>

</Object>
</ListObjectsResponse>

List objects — Selected metadata
This example shows how to get a set of tags using the “x-emc-system-tags” and
“x-emc-user-tags” headers.
Listing objects 107

REST API Reference
Request

GET /rest/objects HTTP/1.1
accept: */*
date: Wed, 18 Feb 2009 16:41:02 GMT
content-type: application/octet-stream
x-emc-date: Wed, 18 Feb 2009 16:41:02 GMT
x-emc-tags: part4/part7/part8
x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1
x-emc-signature: hEf+WgX/0HLo6zoQKalo6sB/kt0=
x-emc-system-tags: atime,size
x-emc-user-tags: city

Response

HTTP/1.1 200 OK
Date: Wed, 18 Feb 2009 16:41:02 GMT
Server: Apache
Connection: close
Content-Type: text/plain; charset=UTF-8
x-emc-policy: _int
<?xml version='1.0' encoding='UTF-8'?>
<ListObjectsResponse xmlns='http://www.emc.com/cos/'>

<Object>
<ObjectID>499ad542a2a8bc200499ad5a7099940499b44f51e9

7d</ObjectID>
<SystemMetadataList>

<Metadata>
<Name>atime</Name>
<Value>2009-02-17T23:15:01Z</Value>

</Metadata>
<Metadata>
<Name>size</Name>
<Value>1234</Value>

</Metadata>
</SystemMetadataList>
<UserMetadataList>

<Metadata>
<Name>city</Name>
<Value>boston</Value>
<Listable>false</Listable>

</Metadata>
</UserMetadataList>

</Object>
</ListObjectsResponse>

List objects — with Unicode tag names
This example shows how to get the objects with the tag περιοχή (region). Because the tag
name is Unicode, the value in “x-emc-tags” is percent-encoded and the “x-emc-utf8” is set
to true. The response also includes “x-emc-utf8”.

Request

GET /rest/objects HTTP/1.1
accept: */*
date: Fri, 06 Jan 2012 16:46:21 GMT
content-type: application/octet-stream
x-emc-date: Fri, 06 Jan 2012 16:46:21 GMT
x-emc-tags: %CF%80%CE%B5%CF%81%CE%B9%CE%BF%CF%87%CE%AE
x-emc-utf8: true
x-emc-uid: 071464e3e8fb4cce8609a623fd9df025/user1
x-emc-signature: ApiTlJQW7gTZ5M5xBa3p01kx7L0=
108 EMC Atmos Version 2.4 Programmer’s Guide

REST API Reference
Response

HTTP/1.1 200 OK
Date: Fri, 06 Jan 2012 16:46:21 GMT
Server: Apache
x-emc-policy: _int
x-emc-utf8: true
Content-Length: 204
Connection: close
Content-Type: text/xml
<?xml version='1.0' encoding='UTF-8'?>
<ListObjectsResponse xmlns='http://www.emc.com/cos/'>
 <Object>

<ObjectID>4ef49feaa106904c04ef4a066e778104f071a5ff0c85</ObjectID>
 </Object>
</ListObjectsResponse>

Listing user metadata tags
Returns the user metadata tags assigned to the specified object.

Regular user metadata is returned using the “x-emc-tags” header, and listable metadata is
returned using the “x-emc-listable-tags” header.

Include “x-emc-utf8” header set to true when the values returned include Unicode
characters.

Permissions

Read

HTTP method

GET

Object interface URI

/rest/objects/<objectID>?metadata/tags

Namespace interface URI

/rest/namespace/photos/<pathname>?metadata/tags

Request parameters

Required:

• “x-emc-date”or “Date”

• “x-emc-signature”

• “x-emc-uid”

Optional

• “x-emc-utf8” (when the data returned is in Unicode)
Listing user metadata tags 109

REST API Reference
Object interface examples

Request

GET
/rest/objects/4dc19958a20574f604dc1a3a1ec8cb04dcc1679d6609?metadata
/tags HTTP/1.1

accept: */*
date: Thu, 12 May 2011 17:42:32 GMT
content-type: application/octet-stream
x-emc-date: Thu, 12 May 2011 17:42:32 GMT
host: 10.238.112.140:1234
x-emc-uid: 66371ac3bd8148348c0f3f1545e2da69/test-uid
x-emc-signature: cNLgr0oBkiIy24+5OgdeLZCjVy0=

Response

HTTP/1.1 200 OK
Date: Thu, 12 May 2011 17:42:36 GMT
Server: Apache
x-emc-policy: _int
x-emc-tags: city, country, state
x-emc-listable-tags: color, pattern
Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8

List user metadata tags with Unicode characters
In this example, the tags that will be returned are in Unicode so the request includes the
“x-emc-utf8” header set to true so that Atmos will percent-encode the values it returns on
the “x-emc-tags” and “x-emc-listable-tags” headers.

Request

GET
/rest/objects/4ef49feaa106904c04ef4a066e778104f071a5ff0c85?metadata
/tags HTTP/1.1

date: Fri, 06 Jan 2012 16:47:33 GMT
content-type: application/octet-stream
x-emc-date: Fri, 06 Jan 2012 16:47:33 GMT
x-emc-utf8: true
x-emc-uid: 071464e3e8fb4cce8609a623fd9df025/user1
x-emc-signature: lMgIiA1XbLod3knlkUMqbFwZhmM=

Response

HTTP/1.1 200 OK
Date: Fri, 06 Jan 2012 16:47:33 GMT
Server: Apache
x-emc-policy: _int
x-emc-utf8: true
x-emc-tags: %ce%bc%ce%ad%ce%b3%ce%b5%ce%b8%ce%bf%cf%82,

%cf%87%cf%81%cf%8e%ce%bc%ce%b1
x-emc-listable-tags: %cf%80%ce%b5%cf%81%ce%b9%ce%bf%cf%87%ce%ae
Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8
110 EMC Atmos Version 2.4 Programmer’s Guide

REST API Reference
Namespace interface examples

Request

GET /rest/namespace/photos/mypicture.jpg?metadata/tags HTTP/1.1
accept: */*
date: Wed, 18 Feb 2009 16:46:33 GMT
content-type: application/octet-stream
x-emc-date: Wed, 18 Feb 2009 16:46:33 GMT
host: 168.159.116.96
x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1
x-emc-signature: sbifTscR4YrTlkiQQVUSTc/lsHc=

Response

HTTP/1.1 200 OK
Date: Wed, 18 Feb 2009 16:46:33 GMT
Server: Apache
x-emc-tags: part1
x-emc-listable-tags: part3, part4/part7/part8
Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8
x-emc-policy: _int

Listing versions
Returns the list of all versions for the specified objectID. The list includes the version
number, the object ID, and the version creation date.

This list has as many entries as there are versions of the specified object. They are sorted
based on their create time. This list includes all versioned objects that have been created
unless they have been deleted.

The list request must include the top-level object’s object ID. You cannot request the list
by the top-level object’s namespace path.

Use the “x-emc-limit” header to limit the resultset for a request. Atmos limits the
maximum number of versions it can return to 4096. If you set the x-emc-limit value to
higher, it will only return 4096.

Permissions

Read access to the top-level object.

HTTP method

GET

Object interface URI

/rest/objects/<objectID>?versions

Namespace interface URI

Not supported
Listing versions 111

REST API Reference
Request parameters

Required:

• “x-emc-date”or “Date”

• “x-emc-signature”

• “x-emc-uid”

Object interface

Request

GET
/rest/objects/491abe33a105736f0491c2088492430491c5d0d67efc?versions
HTTP/1.1

accept: */*
date: Thu, 13 Nov 2008 16:59:59 GMT
content-type: application/octet-stream
x-emc-date: Thu, 13 Nov 2008 16:59:59 GMT
host: 168.159.116.51
x-emc-uid: 6039ac182f194e15b9261d73ce044939/user1
x-emc-signature: tKLhz275+l8SMxoVnzoo/TNgbu8=

Response

HTTP/1.1 200 OK
Date: Thu, 13 Nov 2008 16:59:59 GMT
Server: Apache/2.0.63 (rPath)
Content-Length: 252
Connection: close
Content-Type: text/xml
<?xml version='1.0' encoding='UTF-8'?>
<ListVersionsResponse xmlns='http://www.emc.com/cos/'>
<Ver>
<VerNum>0</VerNum>
<OID>491abe33a105736f0491c2088492430491c5d0fbaf74</OID>
<itime>2008-11-12T16:00:00Z</itime>
</Ver>

<Ver>
<VerNum>1</VerNum>
<OID>491abe33a105736f0491c2088492430491c5d0f0daa8</OID>
<itime>2008-11-13T16:59:59Z</itime>

</Ver>
</ListVersionsResponse>

Reading an object
Use this operation to:

• Return the contents of an object. The contents include the associated user metadata,
system metadata, and access-control lists.

• Use the optional “Range” header to read only part of the object. The value of the
Range header should be the byte ranges to retrieve, in the form
Bytes=begin_offset-end_offset. The byte offsets are 0 based: 0 is the first byte, 1 is
the second byte, and so on.
112 EMC Atmos Version 2.4 Programmer’s Guide

REST API Reference
• List the contents of a directory. By default, the operation returns a list of directory
entries, and each entry includes the object ID, the filename, and file type. The
operation also allows you to return metadata for each of the entries in the directory by
using the following headers:

• To get all system and user metadata for each entry in the directory, specify the
request header “x-emc-include-meta”: true.

• To get a subset of system metadata tags, specify the tag names as a
comma-separated list on the “x-emc-system-tags” header.

• To get a subset of user metadata tags, specify the tag names on as a
comma-separated list on the “x-emc-user-tags”.

You can combine the “x-emc-system-tags” and “x-emc-user-tags”.

See “Namespace interface — Directory listing examples” on page 123 for
examples of how to use each of these headers.

In some cases, Atmos might force the pagination of the resultset if the number of
entries is too large. To ensure that your application can handle forced pagination, it
should be prepared to handle an “x-emc-token” in the response.

To define pagination, use the “x-emc-limit” header.

If the object was created with a checksum, the “x-emc-wschecksum” header is returned in
the response.

If the object’s metadata (user or system) includes Unicode data, include the “x-emc-utf8”
(true) on the request and Atmos will return them as percent-encoded values.

Permissions

Read permission is required (for both the namespace interface and the object interface).

HTTP method

GET

Object interface URI

/rest/objects/objectID

Namespace interface URI

/rest/namespace/pathname

Request parameters

Required:

• “x-emc-date”or “Date”

• “x-emc-signature”

• “x-emc-uid”

• “x-emc-utf8” (use if metadata names/values are in Unicode)
Reading an object 113

REST API Reference
Optional:

• “Range”

• “x-emc-include-meta”

• “x-emc-limit”

• “x-emc-system-tags”

• “x-emc-token”

• “x-emc-user-tags”

Object interface examples

• “Basic read object”

• “Read a directory containing one file”

• “Read object using range header”

• “Read object containing Unicode metadata name/value pairs”

Basic read object

Request

GET /rest/objects/4dc19958a20574f604dc1a3a1ec8cb04dcc1679d6609
HTTP/1.1

accept: */*
date: Thu, 12 May 2011 17:53:21 GMT
content-type: application/octet-stream
x-emc-date: Thu, 12 May 2011 17:53:21 GMT
host: 10.238.112.140:1234
x-emc-uid: 66371ac3bd8148348c0f3f1545e2da69/test-uid
x-emc-signature: OGB4xNR6CoIUscfl1b7DdatQMV8=

Response

HTTP/1.1 200 OK
Date: Thu, 12 May 2011 17:53:25 GMT
Server: Apache
x-emc-policy: default
x-emc-meta: city=boston, state=ma, country=united states,

atime=2011-05-12T17:18:50Z, mtime=2011-05-12T17:18:50Z,
ctime=2011-05-12T17:18:50Z, itime=2011-05-12T17:18:49Z,
type=regular, uid=test-uid, gid=apache,
objectid=4dc19958a20574f604dc1a3a1ec8cb04dcc1679d6609, size=110076,
nlink=0, policyname=default

x-emc-listable-meta: color=blue, pattern=stripes
x-emc-useracl: anne=FULL_CONTROL, test-uid=FULL_CONTROL
x-emc-groupacl: other=NONE
Content-Length: 110076
Connection: close
Content-Type: application/octet-stream

Read a directory containing one file
This request is for a directory that contains one file and one subdirectory.
114 EMC Atmos Version 2.4 Programmer’s Guide

REST API Reference
Request

GET /rest/objects/49a2b73da2a8bc20049a2b79d84405049a316695b311
HTTP/1.1
accept: */*
date: Tue, 24 Feb 2009 16:15:50 GMT
content-type: application/octet-stream
x-emc-date: Tue, 24 Feb 2009 16:15:50 GMT
host: 168.159.116.96:8080
x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1
x-emc-signature: p0OWEqTr2oUUz3xdzCbjOQk8+mE=

Response

HTTP/1.1 200 OK
Date: Tue, 24 Feb 2009 16:15:50 GMT
Server: Apache
Content-Length: 505
x-emc-groupacl: other=NONE
x-emc-useracl: user1=FULL_CONTROL
x-emc-meta: atime=2009-02-23T21:34:33Z, mtime=2009-02-23T21:34:33Z,
ctime=2009-02-23T21:34:33Z, itime=2009-02-23T21:34:33Z,
type=directory, uid=user1, gid=apache,
objectid=49a2b73da2a8bc20049a2b79d84405049a316695b311,
objname=mydirectory, size=4096, nlink=1, policyname=default
Connection: close
Content-Type: text/xml
x-emc-policy: default

<?xml version='1.0' encoding='UTF-8'?>
<ListDirectoryResponse xmlns='http://www.emc.com/cos/'>
 <DirectoryList>
 <DirectoryEntry>

<ObjectID>49a2b73da2a8bc20049a2b79d84405049a41b41ee06a</ObjectID>
 <FileType>directory</FileType>
 <Filename>mysubdirectory</Filename>

</DirectoryEntry>
<DirectoryEntry>

<ObjectID>49a2b73da2a8bc20049a2b79d84405049a41b5091679</ObjectID>
 <FileType>regular</FileType>
 <Filename>myfile.txt</Filename>

</DirectoryEntry>
 </DirectoryList>
</ListDirectoryResponse>

Read object using range header
In this section, we use an example object that is 50 bytes long and has the following body:

the quick brown fox jumps right over the lazy dog

For brevity, all headers not dealing directly with ranges were removed.

Request 1

This example requests the entire object

GET /rest/objects/4acbb971a1a8482004acbb9f355e3a04acf7e8ee8db1
HTTP/1.1
Reading an object 115

REST API Reference
Response 1

HTTP/1.1 200 OK
Content-Length: 50

the quick brown fox jumps right over the lazy dog

Request 2

Requests bytes 4-8.

GET /rest/objects/4acbb971a1a8482004acbb9f355e3a04acf7e8ee8db1
HTTP/1.1
range: Bytes=4-8

Response 2

HTTP/1.1 206 Partial Content
Content-Range: bytes 4-8/50
Content-Length: 5

quick

Request 3

Requests bytes 4-8 and 41-44.

GET /rest/objects/4acbb971a1a8482004acbb9f355e3a04acf7e8ee8db1
HTTP/1.1
range: Bytes=4-8,41-44

Response 3

HTTP/1.1 206 Partial Content
Content-Length: 230
Content-Type: multipart/byteranges; boundary=bound04acf7f0ae3ccc

--bound04acf7f0ae3ccc
Content-Type: application/octet-stream
Content-Range: bytes 4-8/50

quick
--bound04acf7f0ae3ccc
Content-Type: application/octet-stream
Content-Range: bytes 41-44/50

lazy
--bound04acf7f0ae3ccc--

Request 4

Requests from byte 32 until the end of the object.

GET /rest/objects/4acbb971a1a8482004acbb9f355e3a04acf7e8ee8db1
HTTP/1.1
range: Bytes=32-

Response 4

HTTP/1.1 206 Partial Content
Content-Range: bytes 32-49/50
Content-Length: 18

over the lazy dog
116 EMC Atmos Version 2.4 Programmer’s Guide

REST API Reference
Request 5

Requests the last 9 bytes.

GET /rest/objects/4acbb971a1a8482004acbb9f355e3a04acf7e8ee8db1
HTTP/1.1
range: Bytes=-9

Response 5

HTTP/1.1 206 Partial Content
Content-Range: bytes 41-49/50
Content-Length: 9

lazy dog

Request 6

Requests bytes 4-8, from bytes 32 until the end of the object, and the last 9 bytes.

GET /rest/objects/4acbb971a1a8482004acbb9f355e3a04acf7e8ee8db1
HTTP/1.1
range: Bytes=4-8,32-,-9

Response 6

HTTP/1.1 206 Partial Content
Content-Length: 351
Content-Type: multipart/byteranges; boundary=bound04acf7f8a23b49

--bound04acf7f8a23b49
Content-Type: application/octet-stream
Content-Range: bytes 4-8/50

quick
--bound04acf7f8a23b49
Content-Type: application/octet-stream
Content-Range: bytes 32-49/50

over the lazy dog

--bound04acf7f8a23b49
Content-Type: application/octet-stream
Content-Range: bytes 41-49/50

lazy dog

--bound04acf7f8a23b49--

Request 7

Requests a range that is valid but not satisfiable.

GET /rest/objects/4acbb971a1a8482004acbb9f355e3a04acf7e8ee8db1
HTTP/1.1
range: Bytes=1000-
Reading an object 117

REST API Reference
Response 7

HTTP/1.1 416 Requested Range Not Satisfiable
Content-Length: 136
Content-Range: bytes */50
Content-Type: text/xml

<?xml version='1.0' encoding='UTF-8'?>
<Error>
<Code>1004</Code>
<Message>The specified range cannot be satisfied.</Message>
</Error>

Request 8

Requests one range that is not satisfiable and one range that is satisfiable.

GET /rest/objects/4acbb971a1a8482004acbb9f355e3a04acf7e8ee8db1
HTTP/1.1
range: Bytes=1000-,4-8

Response 8

HTTP/1.1 206 Partial Content
Content-Range: bytes 4-8/50
Content-Length: 5

quick

Request 9

Requests an invalid byte range. The entire object is returned.

GET /rest/objects/4acbb971a1a8482004acbb9f355e3a04acf7e8ee8db1
HTTP/1.1
range: Bytes=a-100

Response 9

HTTP/1.1 200 OK
Content-Length: 50

the quick brown fox jumps right over the lazy dog

Read object containing Unicode metadata name/value pairs
This example passes in the “x-emc-utf8” header on the request. The data returned on the
x-emc-meta and x-emc-listable headers are percent-encoded because they are in Unicode
format.

Request

GET /rest/objects/4ef49feaa106904c04ef4a066e778104f071a5ff0c85
HTTP/1.1

date: Fri, 06 Jan 2012 16:49:24 GMT
content-type: application/octet-stream
x-emc-date: Fri, 06 Jan 2012 16:49:24 GMT
x-emc-utf8: true
x-emc-uid: 071464e3e8fb4cce8609a623fd9df025/user1
x-emc-signature: 1zeajUWbFs2LreETTfmUtAzDSZw=
118 EMC Atmos Version 2.4 Programmer’s Guide

REST API Reference
Response

HTTP/1.1 200 OK
Date: Fri, 06 Jan 2012 16:49:24 GMT
Server: Apache
x-emc-policy: default
x-emc-utf8: true
x-emc-meta: %cf%87%cf%81%cf%8e%ce%bc%ce%b1=%ce%bc%cf%80%ce%bb%ce%b5,

%ce%bc%ce%ad%ce%b3%ce%b5%ce%b8%ce%bf%cf%82=%ce%bc%ce%b9%ce%ba%cf%81
%cf%8c, atime=2012-01-06T16:45:22Z,

mtime=2012-01-06T15:59:28Z, ctime=2012-01-06T16:45:22Z,
itime=2012-01-06T15:59:27Z, type=regular, uid=user1, gid=apache,
objectid=4ef49feaa106904c04ef4a066e778104f071a5ff0c85,

objname=%cf%85%cf%80%ce%bf%ce%bb%ce%bf%ce%b3%ce%b9%cf%83%cf%84%ce%ae.j
pg, size=459, nlink=1, policyname=default

x-emc-listable-meta:
%cf%80%ce%b5%cf%81%ce%b9%ce%bf%cf%87%ce%ae=%ce%b2%cf%8c%cf%81%ce%b5
%ce%b9%ce%b1

x-emc-useracl: user1=FULL_CONTROL
x-emc-groupacl: other=NONE
Content-Length: 459
Connection: close
Content-Type: application/octet-stream

Namespace interface examples

Request 1

GET /rest/namespace/photos/mypicture.jpg HTTP/1.1
accept: */*
date: Wed, 18 Feb 2009 16:52:05 GMT
content-type: application/octet-stream
x-emc-date: Wed, 18 Feb 2009 16:52:05 GMT
host: 168.159.116.96
x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1
x-emc-signature: LYcvpkX1jpjdguTf2VpO5Dkt4TM=

Response 1

HTTP/1.1 200 OK
Date: Wed, 18 Feb 2009 16:52:05 GMT
Server: Apache
Content-Length: 211
x-emc-groupacl: other=NONE
x-emc-useracl: fred=FULL_CONTROL, john=FULL_CONTROL, mary=READ,
user1=FULL_CONTROL
x-emc-listable-meta: part4/part7/part8=quick, part3=fast
x-emc-meta: part1=order, atime=2009-02-18T16:28:03Z,
mtime=2009-02-18T16:08:12Z, ctime=2009-02-18T16:28:03Z,
itime=2009-02-18T16:08:12Z, type=regular, uid=user1, gid=apache,
objectid=499ad542a1a8bc200499ad5a6b05580499c326c2f984,
objname=mypicture.jpg, size=211, nlink=1, policyname=default
Connection: close
Content-Type: application/octet-stream
x-emc-policy: default

Request 2

This request is for a directory that contains one file and one subdirectory.
Reading an object 119

REST API Reference
GET /rest/namespace/photos/mydirectory HTTP/1.1
accept: */*
date: Tue, 24 Feb 2009 16:16:17 GMT
content-type: application/octet-stream
x-emc-date: Tue, 24 Feb 2009 16:16:17 GMT
host: 168.159.116.96:8080
x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1
x-emc-signature: FcGSy/D7jyjyifx2U/1yrO9Vfd8=

Response 2

HTTP/1.1 200 OK
Date: Tue, 24 Feb 2009 16:16:17 GMT
Server: Apache
Content-Length: 505
x-emc-groupacl: other=
x-emc-useracl: user1=FULL_CONTROL
x-emc-meta: atime=2009-02-23T21:34:33Z, mtime=2009-02-23T21:34:33Z,
ctime=2009-02-23T21:34:33Z, itime=2009-02-23T21:34:33Z,
type=directory, uid=user1, gid=apache,
objectid=49a2b73da2a8bc20049a2b79d84405049a316695b311,
objname=mydirectory, size=4096, nlink=1, policyname=default
Connection: close
Content-Type: text/xml
x-emc-policy: default

<?xml version='1.0' encoding='UTF-8'?>
<ListDirectoryResponse xmlns='http://www.emc.com/cos/'>
 <DirectoryList>
<DirectoryEntry>

<ObjectID>49a2b73da2a8bc20049a2b79d84405049a41b41ee06a</ObjectID>
 <FileType>directory</FileType>
 <Filename>mysubdirectory</Filename>
</DirectoryEntry>
<DirectoryEntry>

<ObjectID>49a2b73da2a8bc20049a2b79d84405049a41b5091679</ObjectID>
 <FileType>regular</FileType>
 <Filename>myfile.txt</Filename>
</DirectoryEntry>
 </DirectoryList>
</ListDirectoryResponse>

Read a directory
This example shows how to use the read object operation for a directory. It uses:

• “x-emc-limit” to request that up to two entries be returned. When listing a directory
using ReadObject or when using ListObjects, the “x-emc-token” header may be
returned in the response headers at any time.

• If the “x-emc-token”header exists, it means that a partial list of results was returned,
and that you must use pagination to retrieve the full list of results as shown in
Request 4.
120 EMC Atmos Version 2.4 Programmer’s Guide

REST API Reference
Request 3

GET /rest/namespace/testdirectory/ HTTP/1.1
accept: */*
x-emc-limit: 2
date: Mon, 15 Mar 2010 19:27:48 GMT
content-type: application/octet-stream
x-emc-date: Mon, 15 Mar 2010 19:27:48 GMT
host: 168.159.116.116:8080
x-emc-uid: 1fd94b5d1a30483b818e4926c6edbb81/test1
x-emc-signature: ydK9cONyE4JSfBxl/HMaXIrrBkk=

Response 3

HTTP/1.1 200 OK
Date: Mon, 15 Mar 2010 19:27:48 GMT
Server: Apache
x-emc-groupacl: other=NONE
x-emc-useracl: test1=FULL_CONTROL
x-emc-policy: _int
x-emc-meta: atime=2010-03-15T17:23:56Z, mtime=2010-03-15T17:24:36Z,
ctime=2010-03-15T17:24:36Z, itime=2010-03-15T17:23:56Z,
type=directory, uid=test1, gid=apache,
objectid=4b97cdfca2068f2c04b97ce826fb9504b9e6d2c4c859,
objname=testdirectory, size=4096, nlink=1, policyname=default
x-emc-token: file3
Content-Length: 489
Connection: close
Content-Type: text/xml

<?xml version='1.0' encoding='UTF-8'?>
<ListDirectoryResponse xmlns='http://www.emc.com/cos/'>

<DirectoryList>
<DirectoryEntry>

<ObjectID>4b97cdfca2068f2c04b97ce826fb9504b9e6d40a
1270</ObjectID>

<FileType>regular</FileType>
<Filename>file1</Filename>

</DirectoryEntry>
<DirectoryEntry>

<ObjectID>4b97cdfca2068f2c04b97ce826fb9504b9e6d41d
0308</ObjectID>

<FileType>regular</FileType>
<Filename>file2</Filename>

</DirectoryEntry>
</DirectoryList>

</ListDirectoryResponse>

Request 4

To get the next set of results (next page) invoke the operation again, providing the value of
“x-emc-token” of the response in the subsequent request. This example uses the token
that was returned from the previous call:

GET /rest/namespace/testdirectory/ HTTP/1.1
x-emc-token: file3
accept: */*
x-emc-limit: 2
date: Mon, 15 Mar 2010 19:35:45 GMT
content-type: application/octet-stream
x-emc-date: Mon, 15 Mar 2010 19:35:45 GMT
host: 168.159.116.116:8080
x-emc-uid: 1fd94b5d1a30483b818e4926c6edbb81/test1
x-emc-signature: Ng5fqKtkzl5Ho0o4t2PUeq+CCYM=
Reading an object 121

REST API Reference
Response 4

HTTP/1.1 200 OK
Date: Mon, 15 Mar 2010 19:35:49 GMT
Server: Apache
x-emc-groupacl: other=NONE
x-emc-useracl: test1=FULL_CONTROL
x-emc-policy: _int
x-emc-meta: atime=2010-03-15T17:23:56Z, mtime=2010-03-15T17:24:36Z,
ctime=2010-03-15T17:24:36Z, itime=2010-03-15T17:23:56Z,
type=directory, uid=test1, gid=apache,
objectid=4b97cdfca2068f2c04b97ce826fb9504b9e6d2c4c859,
objname=testdirectory, size=4096, nlink=1, policyname=default
Content-Length: 489
Connection: close
Content-Type: text/xml

<?xml version='1.0' encoding='UTF-8'?>
<ListDirectoryResponse xmlns='http://www.emc.com/cos/'>
<DirectoryList>
<DirectoryEntry>

<ObjectID>4b97cdfca2068f2c04b97ce826fb9504b9e6d436bd68</ObjectID>
<FileType>regular</FileType>
<Filename>file3</Filename>

</DirectoryEntry>
<DirectoryEntry>

<ObjectID>4b97cdfca2068f2c04b97ce826fb9504b9e6d48c1d26</ObjectID>
<FileType>regular</FileType>
<Filename>file4</Filename>

</DirectoryEntry>
</DirectoryList>
</ListDirectoryResponse>

Read object with checksum

Request

GET /rest/namespace/file1.txt HTTP/1.1
accept: */*
date: Fri, 11 Jun 2010 11:14:44 GMT
x-emc-date: Fri, 11 Jun 2010 11:14:44 GMT
host: 168.159.116.112:2345
x-emc-uid: ebd858f829114dfabbcf069637a07cfe/user1
x-emc-signature: QxCk89s7TvWsoPptteVEAXPO8KM=

Response

HTTP/1.1 200 OK
Date: Thu, 17 Jun 2010 12:40:53 GMT
Server: Apache
x-emc-policy: default
x-emc-meta: atime=2010-06-11T11:16:44Z, mtime=2010-06-11T11:16:44Z,

ctime=2010-06-11T11:16:44Z, itime=2010-06-11T11:16:44Z,
type=regular, uid=user1, gid=apache,
objectid=4bf520e2a105737304bf52170a4e6204c121b1ca464d, size=1037,
nlink=0

x-emc-useracl: user1=FULL_CONTROL
x-emc-groupacl: other=NONE
x-emc-wschecksum: sha0/1037/87hn7kkdd9d982f031qwe9ab224abjd6h1276nj9
Content-Length: 1037
Connection: close
Content-Type: application/octet-stream
122 EMC Atmos Version 2.4 Programmer’s Guide

REST API Reference
Namespace interface — Directory listing examples

The examples in this section show how to use various headers to request that different
metadata be returned for the contents of a directory.

Request1

This example shows the default read directory operation. By default, the operation returns
the Object ID, file type, and file name for each entry (or file) in the directory. In this
example, the dir3 directory includes a single file called file1.

GET /rest/namespace/dir3 HTTP/1.1
accept: */*
date: Tue, 01 Feb 2011 09:44:09 GMT
content-type: application/octet-stream
x-emc-date: Tue, 01 Feb 2011 09:44:09 GMT
host: 10.4.136.25:1234
x-emc-uid: 470302c7294145f2b0ca5cabc4f3e0fe/testUID
x-emc-signature: uQNlndtyTCjroTdO+qy+mhSEuLE=

Response1

HTTP/1.1 200 OK
Date: Tue, 01 Feb 2011 09:44:13 GMT
Server: Apache
x-emc-policy: _int
x-emc-meta: atime=2011-02-01T09:38:51Z, mtime=2011-02-01T09:38:52Z,

ctime=2011-02-01T09:38:52Z, itime=2011-02-01T09:38:52Z,
type=directory, uid=testUID, gid=apache,
objectid=4d3e8694a10574f604d3e8eea8f08404d47d4ac54bef,

objname=dir3, size=134, nlink=2, policyname=default
x-emc-useracl: testUID=FULL_CONTROL
x-emc-groupacl: other=NONE
Content-Length: 322
Connection: close
Content-Type: text/xml

<?xml version='1.0' encoding='UTF-8'?>
<ListDirectoryResponse xmlns='http://www.emc.com/cos/'>

<DirectoryList>
<DirectoryEntry>

<ObjectID>4d3e8694a10574f604d3e8eea8f08404d47d4ac
8d808</ObjectID>

<FileType>regular</FileType>
<Filename>file1</Filename>

</DirectoryEntry>
</DirectoryList>

</ListDirectoryResponse>

Request2

This request uses the “x-emc-include-meta” header so that all of the system and user
metadata for each directory entry is included in their response.

GET /rest/namespace/dir3 HTTP/1.1
accept: */*
date: Tue, 01 Feb 2011 10:50:35 GMT
content-type: application/octet-stream
x-emc-date: Tue, 01 Feb 2011 10:50:35 GMT
host: 10.4.136.25:1234
x-emc-uid: 470302c7294145f2b0ca5cabc4f3e0fe/testUID
x-emc-signature: nHskNUaVzmLpXaLuUvFcHTjce/0=
x-emc-include-meta: true
Reading an object 123

REST API Reference
Response2

HTTP/1.1 200 OK
Date: Tue, 01 Feb 2011 10:50:39 GMT
Server: Apache
x-emc-policy: _int
x-emc-meta: atime=2011-02-01T09:38:51Z, mtime=2011-02-01T09:38:52Z,

ctime=2011-02-01T09:38:52Z, itime=2011-02-01T09:38:52Z,
type=directory, uid=testUID, gid=apache,
objectid=4d3e8694a10574f604d3e8eea8f08404d47d4ac54bef,
objname=dir3, size=134, nlink=2, policyname=default

x-emc-useracl: testUID=FULL_CONTROL
x-emc-groupacl: other=NONE
Content-Length: 1758
Connection: close
Content-Type: text/xml
<?xml version='1.0' encoding='UTF-8'?>
<ListDirectoryResponse xmlns='http://www.emc.com/cos/'>
<DirectoryList>
<DirectoryEntry>
<ObjectID>4d3e8694a10574f604d3e8eea8f08404d47d4ac8d

808</ObjectID>
<FileType>regular</FileType>
<Filename>file1</Filename>
<SystemMetadataList>
<Metadata>

<Name>atime</Name>
<Value>2011-02-01T09:38:53Z</Value>

</Metadata>
<Metadata>
<Name>mtime</Name>
<Value>2011-02-01T09:38:51Z</Value>

</Metadata>
<Metadata>
<Name>ctime</Name>
<Value>2011-02-01T09:38:51Z</Value>

</Metadata>
<Metadata>
<Name>itime</Name>
<Value>2011-02-01T09:38:52Z</Value>

</Metadata>
<Metadata>
<Name>type</Name>
<Value>regular</Value>

</Metadata>
<Metadata>
<Name>uid</Name>
<Value>testUID</Value>

</Metadata>
<Metadata>
<Name>gid</Name>
<Value>apache</Value>

</Metadata>
<Metadata>
<Name>objectid</Name>
<Value>4d3e8694a10574f604d3e8eea8f08404d47d4ac8d8

08</Value>
</Metadata>
<Metadata>
<Name>objname</Name>
<Value>file1</Value>

</Metadata>
<Metadata>
<Name>size</Name>
<Value>0</Value>

</Metadata>
124 EMC Atmos Version 2.4 Programmer’s Guide

REST API Reference
<Metadata>
<Name>nlink</Name>
<Value>1</Value>

</Metadata>
<Metadata>
<Name>policyname</Name>
<Value>default</Value>

</Metadata>
</SystemMetadataList>
<UserMetadataList>
<Metadata>
<Name>city-boston</Name>
<Value></Value>
<Listable>false</Listable>

</Metadata>
<Metadata>
<Name>state</Name>
<Value>ma</Value>
<Listable>false</Listable>

</Metadata>
<Metadata>
<Name>color</Name>
<Value>blue</Value>
<Listable>true</Listable>

</Metadata>
</UserMetadataList>

</DirectoryEntry>
</DirectoryList>

</ListDirectoryResponse>

Get specific metadata tags

Request3

This request uses the “x-emc-user-tags” to request that only the state and color user
metadata tags get returned, and it uses the “x-emc-system-tags” header to limit the
system metadata to atime and size.

content-type: application/octet-stream
x-emc-date: Tue, 01 Feb 2011 09:42:51 GMT
host: 10.4.136.25:1234
x-emc-user-tags: state,color
x-emc-system-tags: atime,size
x-emc-uid: 470302c7294145f2b0ca5cabc4f3e0fe/testUID
x-emc-signature: wyreXy+3U3xW9SLKVl5NW6oRcVA=

Response3

HTTP/1.1 200 OK
Date: Tue, 01 Feb 2011 09:42:56 GMT
Server: Apache
x-emc-policy: _int
x-emc-meta: atime=2011-02-01T09:38:51Z, mtime=2011-02-01T09:38:52Z,

ctime=2011-02-01T09:38:52Z, itime=2011-02-

01T09:38:52Z, type=directory, uid=testUID, gid=apache,
objectid=4d3e8694a10574f604d3e8eea8f08404d47d4ac54bef,

objname=dir3, size=134, nlink=2, policyname=default
x-emc-useracl: testUID=FULL_CONTROL
x-emc-groupacl: other=NONE
Content-Length: 787
Connection: close
Content-Type: text/xml
Reading an object 125

REST API Reference
<?xml version='1.0' encoding='UTF-8'?>
<ListDirectoryResponse xmlns='http://www.emc.com/cos/'>

<DirectoryList>
<DirectoryEntry>

<ObjectID>4d3e8694a10574f604d3e8eea8f08404d47d4ac8d808</ObjectID>
 <FileType>regular</FileType>
 <Filename>file1</Filename>

<SystemMetadataList>
<Metadata>

<Name>atime</Name>
<Value>2011-02-01T09:38:53Z</Value>

</Metadata>
<Metadata>

<Name>size</Name>
<Value>0</Value>

</Metadata>
</SystemMetadataList>
<UserMetadataList>

<Metadata>
<Name>state</Name>
<Value>ma</Value>
<Listable>false</Listable>

</Metadata>
<Metadata>

<Name>color</Name>
<Value>blue</Value>
<Listable>true</Listable>

</Metadata>
</UserMetadataList>

</DirectoryEntry>
</DirectoryList>

</ListDirectoryResponse>

Renaming a file or directory in the namespace
Renames a file or a directory within its current namespace. Requires the “x-emc-path”
custom header to provide the full path to the new file or directory name. If the new name
passed in on the “x-emc-path” header is in Unicode format, the client application must
percent-encode the data, and include the “x-emc-utf8” header on the request.

Use the optional “x-emc-force” header to specify whether the operation should overwrite
the target file or directory if it already exists. To overwrite the target file or directory (if it
already exists), set “x-emc-force” to true. If “x-emc-force” is not specified or set to false,
the target file will not be overwritten and the rename operation will fail. A directory must
be empty to be overwritten.

This operation is not supported in the object interface. It returns an error code 1042 if
attempted.

Permissions

Write (execute) permissions on both the parent and target directories.

HTTP method

POST
126 EMC Atmos Version 2.4 Programmer’s Guide

REST API Reference
Object interface URI

Not supported

Namespace interface URI

/namespace/pathname?rename

Request parameters

Required:

• “x-emc-date”or “Date”

• “x-emc-path”

• “x-emc-signature”

• “x-emc-uid”

• “x-emc-utf8” (only required when the x-emc-path data is in Unicode format)

Optional:

• “x-emc-force”

Namespace interface examples

Rename a file
The following example shows how to rename a file called custnames (located in the /dir
directory of the namespace) to custinfo.

Request

POST /rest/namespace/dir/custnames?rename HTTP/1.1
date: Wed, 06 Jan 2010 16:12:09 GMT
x-emc-date: Wed, 06 Jan 2010 16:12:09 GMT
x-emc-path: dir/custinfo
x-emc-force: true
x-emc-uid: 47cadb22de2e46328e49bafc02f64637/user1
x-emc-signature: snxbvMmc4vyCm/b+XsDje30coSs=

Response

HTTP/1.1 200 OK
Date: Wed, 06 Jan 2010 16:12:09 GMT
Server: Apache
x-emc-policy: _int
Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8

Rename a file when x-emc-force is false
This operation requests a rename from myDir/myfile.txt to myNewDir/newName.txt, but
the x-emc-force header is set to false and the operation fails.

Request

POST /rest/namespace/myDir/myfile.txt?rename HTTP/1.1
accept: */*
Renaming a file or directory in the namespace 127

REST API Reference
date: Thu, 29 Jul 2010 19:17:01 GMT
content-type: application/octet-stream
x-emc-date: Thu, 29 Jul 2010 19:17:00 GMT
x-emc-path: myNewDir/newName.txt
host: 168.159.116.112:1234
x-emc-uid: 624a29f7a544467dabaf791f6daf6939/user1
x-emc-signature: go08bLAGmT3dP8t1U/tG9fEFWO0=
x-emc-force: false

Response

HTTP/1.1 400 Bad Request
Date: Thu, 29 Jul 2010 19:17:01 GMT
Server: Apache
Content-Length: 149
Connection: close
Content-Type: text/xml

<?xml version='1.0' encoding='UTF-8'?>
<Error>
<Code>1016</Code>
<Message>The resource you are trying to create already

exists.</Message>
</Error>

Rename a directory
The following example shows how to rename a directory called samples to examples.

Request

POST /rest/namespace/samples?rename HTTP/1.1
date: Wed, 06 Jan 2010 16:17:51 GMT
x-emc-date: Wed, 06 Jan 2010 16:17:51 GMT
x-emc-path: examples
x-emc-force: true
x-emc-uid: 47cadb22de2e46328e49bafc02f64637/user1
x-emc-signature: zZ0HcFSpiW1bKbWS9QF9eofViGU=

Response

HTTP/1.1 200 OK
Date: Wed, 06 Jan 2010 16:17:51 GMT
Server: Apache
x-emc-policy: _int
Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8

Move a file to a different directory
This example shows how to move the file custinfo from the directory dir/ to the directory
archive/.

Request

POST /rest/namespace/dir/custinfo?rename HTTP/1.1
date: Wed, 06 Jan 2010 16:20:52 GMT
x-emc-date: Wed, 06 Jan 2010 16:20:52 GMT
x-emc-path: archive/custinfo
x-emc-force: true
x-emc-uid: 47cadb22de2e46328e49bafc02f64637/user1
x-emc-signature: 4YAhxg9fIiIajX1J4eDiFrWdNnE=
128 EMC Atmos Version 2.4 Programmer’s Guide

REST API Reference
Response

HTTP/1.1 200 OK
Date: Wed, 06 Jan 2010 16:20:52 GMT
Server: Apache
x-emc-policy: _int
Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8

Rename an object to a Unicode value
This examples shows how to rename an object from images/computer.jpg to
images/υπολογιστή.jpg.

Note: Do not encode the path separator '/'.

POST /rest/namespace/images/computer.jpg?rename HTTP/1.1
date: Fri, 06 Jan 2012 16:16:00 GMT
content-type: application/octet-stream
x-emc-date: Fri, 06 Jan 2012 16:16:00 GMT
x-emc-path:

images/%CF%85%CF%80%CE%BF%CE%BB%CE%BF%CE%B3%CE%B9%CF%83%CF%84%CE%AE
.jpg

x-emc-utf8: true
x-emc-uid: 071464e3e8fb4cce8609a623fd9df025/user1
x-emc-signature: NLGgfTvQSrckJOx64ACJy9Nxhz8=
StringToSign

POST
application/octet-stream

Fri, 06 Jan 2012 16:16:00 GMT
/rest/namespace/images/computer.jpg?rename
x-emc-date:Fri, 06 Jan 2012 16:16:00 GMT
x-emc-path:images/%CF%85%CF%80%CE%BF%CE%BB%CE%BF%CE%B3%CE%B9%CF%83%CF%

84%CE%AE.jpg
x-emc-uid:071464e3e8fb4cce8609a623fd9df025/user1
x-emc-utf8:true

Restoring a version
Restores a version of an object to the top-level object. This operation is synchronous so
any applications that request a restore operations might experience some delay
depending on the size of the object being restored. The request must meet these
requirements:

• You cannot use a versioned object to restore another versioned object.

• You cannot restore from a deleted versioned object.

Permissions

Write permission on the top-level object, and read permission on the version object. This
is a UID-based permission, not an administrative role.

HTTP method

PUT
Restoring a version 129

REST API Reference
Object interface URI

/rest/objects/<objectID>?versions

Object interface examples

Request

PUT
/rest/objects/491abe33a105736f0491c2088492430491c5d0d67efc?versions
HTTP/1.1

x-emc-version-oid: 491abe33a105736f0491c2088492430491c5d0f0daa8
accept: */*
date: Thu, 13 Nov 2008 16:59:58 GMT
content-type: application/octet-stream
x-emc-date: Thu, 13 Nov 2008 16:59:58 GMT
host: 168.159.116.51
x-emc-uid: 6039ac182f194e15b9261d73ce044939/user1
x-emc-signature: 4oZorU2nBQlADhq7fTMklstL1eU=

Response

HTTP/1.1 200 OK
Date: Thu, 13 Nov 2008 16:59:58 GMT
Server: Apache/2.0.63 (rPath)
x-emc-delta: 0
Connection: close
Content-Type: text/plain; charset=UTF-8

Setting an ACL
Sets the access control for this object. The operation can be used for setting or resetting
permissions. The request must include “x-emc-groupacl” or “x-emc-useracl”, or the
operation returns an error.

Permissions

Must be the owner of the object or file.

HTTP method

POST

Object interface URI

/rest/objects/objectID?acl

Namespace interface URI

/namespace/pathname?acl

Request parameters

Required:

• “x-emc-date”or “Date”
130 EMC Atmos Version 2.4 Programmer’s Guide

REST API Reference
• “x-emc-groupacl” or “x-emc-useracl”

• “x-emc-signature”

• “x-emc-uid”

Object interface examples

Request

POST /rest/objects/499ad542a1a8bc200499ad5a6b05580499c3168560a4?acl
HTTP/1.1
accept: */*
x-emc-useracl: fred=FULL_CONTROL
date: Wed, 18 Feb 2009 16:21:00 GMT
content-type: application/octet-stream
x-emc-date: Wed, 18 Feb 2009 16:21:00 GMT
x-emc-groupacl: other=NONE
host: 168.159.116.96
x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1
x-emc-signature: nym3OK8krg6uDOpmomnsedRi8YY=

Response

HTTP/1.1 200 OK
Date: Wed, 18 Feb 2009 16:21:00 GMT
Server: Apache
Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8
x-emc-policy: _int

Namespace interface examples

Request

POST /rest/namespace/photos/mypicture.jpg?acl HTTP/1.1
accept: */*
x-emc-useracl: fred=FULL_CONTROL
date: Wed, 18 Feb 2009 16:22:17 GMT
content-type: application/octet-stream
x-emc-date: Wed, 18 Feb 2009 16:22:17 GMT
x-emc-groupacl: other=NONE
host: 168.159.116.96
x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1
x-emc-signature: 93zwmHIQmn5wLxJUCZOcnobw/mY=

Response

HTTP/1.1 200 OK
Date: Wed, 18 Feb 2009 16:22:17 GMT
Server: Apache
Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8
x-emc-policy: _int
Setting an ACL 131

REST API Reference
Setting user metadata
Writes user metadata into the object. To set:

• One or more listable user metadata tags, pass the tag name and tag value
(name=value) on the “x-emc-listable-meta” header on the request.

• One or more non-listable user metadata tags, pass the tag name and tag value
(name=value) on the “x-emc-meta” header on the request.

When specifying more than one tag, supply the name=value pairs in a comma-separated
list. The request fails if it does not include either “x-emc-listable-meta” or “x-emc-meta”.

When writing data in Unicode format, the data must be percent-encoded, and the request
must include the “x-emc-utf8” header or the request fails.

Permissions

Write permission on the object.

HTTP method

POST

Object interface URI

/rest/objects/<objectID>?metadata/user

Namespace interface URI

POST /rest/namespace/<pathname>?metadata/user

Request parameters

Required:

• “x-emc-date”or “Date”

• “x-emc-meta” or “x-emc-listable-meta”

• “x-emc-signature”

• “x-emc-uid”

• “x-emc-utf8” (required if the data passed on the x-emc-meta or x-emc-listable-meta
includes Unicode data)

Object interface examples

Set listable and non-listable metadata tags
This example sets the listable user metadata tag named color to the value of blue, and it
sets the non-listable user metadata tags city and state to the values of boston and MA
respectively.
132 EMC Atmos Version 2.4 Programmer’s Guide

REST API Reference
Request

POST /rest/objects HTTP/1.1
x-emc-listable-meta: color=blue
x-emc-meta: city=boston,state=MA
accept: */*
x-emc-useracl: anne=FULL_CONTROL
date: Wed, 11 May 2011 20:34:26 GMT
content-type: application/octet-stream
x-emc-date: Wed, 11 May 2011 20:34:26 GMT
host: 10.238.112.140:1234
content-length: 110076
x-emc-uid: 66371ac3bd8148348c0f3f1545e2da69/test-uid
x-emc-signature: z8VDtRLDNZ6cjq7VYUsZXtOuiQs=

Response

HTTP/1.1 200 OK
Date: Wed, 18 Feb 2009 16:27:24 GMT
Server: Apache
Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8
x-emc-policy: _int

Set listable and non-listable metadata tags for Unicode values
Sets non-listable metadata to χρώμα=μπλε,μέγεθος=μικρό (color=blue, size=small), and
sets listable metadata to περιοχή=βόρεια (region=north). Because the metadata values
are in Unicode, the values must be percent-encoded and the request must include the
x-emc-utf8:true header.

Request

POST
/rest/objects/4ef49feaa106904c04ef4a066e778104f071a5ff0c85?metadata
/user HTTP/1.1

x-emc-listable-meta:
%CF%80%CE%B5%CF%81%CE%B9%CE%BF%CF%87%CE%AE=%CE%B2%CF%8C%CF%81%CE%B5
%CE%B9%CE%B1

x-emc-meta:
%CF%87%CF%81%CF%8E%CE%BC%CE%B1=%CE%BC%CF%80%CE%BB%CE%B5,%CE%BC%CE%A
D%CE%B3%CE%B5%CE%B8%CE%BF%CF%82=%CE%BC%CE%B9%CE%BA%CF%81%CF%8C

accept: */*
date: Fri, 06 Jan 2012 16:41:23 GMT
content-type: application/octet-stream
x-emc-date: Fri, 06 Jan 2012 16:41:23 GMT
x-emc-utf8: true
host: 127.0.0.1
x-emc-uid: 071464e3e8fb4cce8609a623fd9df025/user1
x-emc-signature: x2IhX/4lVPXf4cDTazu2ZDS+In8=
StringToSign

Request

POST
application/octet-stream

Fri, 06 Jan 2012 16:41:23 GMT
/rest/objects/4ef49feaa106904c04ef4a066e778104f071a5ff0c85?metadata/us

er
x-emc-date:Fri, 06 Jan 2012 16:41:23 GMT
x-emc-listable-meta:%CF%80%CE%B5%CF%81%CE%B9%CE%BF%CF%87%CE%AE=%CE%B2%

CF%8C%CF%81%CE%B5%CE%B9%CE%B1
Setting user metadata 133

REST API Reference
x-emc-meta:%CF%87%CF%81%CF%8E%CE%BC%CE%B1=%CE%BC%CF%80%CE%BB%CE%B5,%CE
%BC%CE%AD%CE%B3%CE%B5%CE%B8%CE%BF%CF%82=%CE%BC%CE%B9%CE%BA%CF%81%CF
%8C

x-emc-uid:071464e3e8fb4cce8609a623fd9df025/user1
x-emc-utf8:true

Namespace interface examples

Request

POST /rest/namespace/photos/mypicture.jpg?metadata/user HTTP/1.1
x-emc-listable-meta: part3=fast
x-emc-meta: part1=order
accept: */*
date: Wed, 18 Feb 2009 16:28:03 GMT
content-type: application/octet-stream
x-emc-date: Wed, 18 Feb 2009 16:28:03 GMT
host: 168.159.116.96
x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1
x-emc-signature: mfz9JwQU+7Wu5T2KFIiNZBetJ4g=

Response

HTTP/1.1 200 OK
Date: Wed, 18 Feb 2009 16:28:03 GMT
Server: Apache
Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8
x-emc-policy: _int

Updating an object
Updates the contents of an object, including its metadata and ACLs. You can update part
of the object or the complete object.

You can also use this operation to add or modify existing metadata or ACLs; for example,
you can change metadata from listable to non-listable and vice versa.

To update part of the object, use the “Range” header to specify the beginning and ending
offsets.

You can change the size of an object in these ways:

• To truncate an object to size=0, omit the “Range” header, and specify an empty
request body. Truncating an object to size=0 leaves the object ID unchanged.

• To overwrite an object, omit the “Range” header and attach the new object content to
the request body.

• To append to an object, specify the “Range” header with:

beginOffset=currentSizeOfTheObject
endOffset=newSizeOfTheObject - 1

then attach the data corresponding to the content increase to the request body.

If the metadata tags that you pass in this request are Unicode, you must percent-encode
the data before submitting the request, and include the “x-emc-utf8” header on the
request. Atmos will percent-encode the values that it returns.
134 EMC Atmos Version 2.4 Programmer’s Guide

REST API Reference
For applications that must conform to SEC 17a-4f standards, you must specify the
“x-emc-wschecksum” header. When you use this header, you must send the checksum of
the entire object that is part of the request.

Updating checksummed objects

To update an object that was created with a checksum, the update request must:

• Be an append operation.

• Include the “x-emc-wschecksum” header. The algorithm name included in the header
must match the value stored in the object’s metadata.

When you make the append request, you must pass in the checksum of the complete
object (the current object size + the amount appended). This ensures that any data
inconsistency is detected as soon as it happens. Suppose you have a 10k object, and you
append 10k to it four times. The data flow would be:

• Create 10k object (POST request that includes checksum of the 10k object.)

• Append 10k to the existing 10k object (PUT request that includes the checksum of the
now 20k object).

• Append 10k to the existing 20k object. (PUT request with the checksum of the now
30k object).

• Append 10k to the existing 30k object. (PUT request with the checksum of the now
40k object).

• Append 10k to the existing 40k object. (PUT request with the checksum of the now
50k object.)

You cannot:

• Pass in a checksum if the object was not created with a checksum.

• Convert an object that has a checksum to one that does not (or vice versa). To remove
or add a checksum to an object, you must delete the object and recreate it.

Permissions

Write permission on the object.

HTTP method

PUT

Object interface URI

/rest/objects/<objectID>

Namespace interface URI

/rest/namespace/<pathname>
Updating an object 135

REST API Reference
Request parameters

Required:

• “x-emc-date”or “Date”

• “x-emc-signature”

• “x-emc-uid”

• “x-emc-utf8” (only required if metadata values are in Unicode)

• “x-emc-wschecksum” (only required if the application must conform to SEC 17a-4f
standards)

Optional:

• “Range”

• “x-emc-wschecksum”

• “x-emc-groupacl”

• “x-emc-listable-meta”

• “x-emc-meta”

• “x-emc-useracl”

Object interface examples

Request

PUT /rest/objects/499ad542a1a8bc200499ad5a6b05580499c3168560a4
HTTP/1.1
x-emc-listable-meta: part4/part9=slow
x-emc-meta: part2=here
accept: */*
x-emc-useracl: john=WRITE
date: Wed, 18 Feb 2009 16:56:31 GMT
content-type: application/octet-stream
x-emc-date: Wed, 18 Feb 2009 16:56:31 GMT
range: Bytes=10-18
host: 168.159.116.96
content-length: 9
x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1
x-emc-signature: opW4gNiT+MiOt/w7IxGgIeP6B+Q=

Response

HTTP/1.1 200 OK
Date: Wed, 18 Feb 2009 16:56:31 GMT
Server: Apache
x-emc-delta: 0
Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8
x-emc-policy: default
136 EMC Atmos Version 2.4 Programmer’s Guide

REST API Reference
Checksum append example

Request

PUT /rest/objects/4bf520e2a105737304bf52170a4e6204c337e3f24ba0
HTTP/1.1

accept: */*
date: Tue, 06 Jul 2010 19:41:30 GMT
content-type: application/octet-stream
x-emc-date: Tue, 06 Jul 2010 19:41:30 GMT
range: Bytes=1037-1086
content-length: 50
x-emc-uid: ebd858f829114dfabbcf069637a07cfe/user1
x-emc-signature: /hNuFdtlDO9Z0Ix6T2+ZxJVk/3E=
x-emc-wschecksum: sha0/1087/4a5411a2c94ef84d32e9ff955a04d8f9f10c6ae9

Response

HTTP/1.1 200 OK
Date: Thu, 17 Jun 2010 13:22:13 GMT
Server: Apache
x-emc-policy: default
x-emc-wschecksum: sha0/1087/4a5411a2c94ef84d32e9ff955a04d8f9f10c6ae9
Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8

Namespace interface examples

Request

PUT /rest/namespace/photos/mypicture.jpg HTTP/1.1
x-emc-listable-meta: part4/part9=slow
x-emc-meta: part2=here
accept: */*
x-emc-useracl: john=WRITE
date: Wed, 18 Feb 2009 16:58:06 GMT
content-type: application/octet-stream
x-emc-date: Wed, 18 Feb 2009 16:58:06 GMT
range: Bytes=10-18
host: 168.159.116.96
content-length: 9
x-emc-uid: 33115732f3b7455d9d2344ddd235f4b9/user1
x-emc-signature: Z5Sl6Pyeu0ehqcyXx7TZgffle8o=

Response

HTTP/1.1 200 OK
Date: Wed, 18 Feb 2009 16:58:06 GMT
Server: Apache
x-emc-delta: 0
Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8
x-emc-policy: default
Updating an object 137

REST API Reference
138 EMC Atmos Version 2.4 Programmer’s Guide

CHAPTER 6
Security

This chapter describes the Atmos web services security model.

• Overview... 140
• Managing authentication .. 140
• REST authentication: securing REST messages with signatures.............................. 141
• Access Control Lists .. 143
Security 139

Security
Overview
Security for web services consists of:

• Authentication using an encrypted signature model. See “Managing authentication”
on page 140.

• Authorization through access-control lists (ACLs) at the user (UID) level. See “Access
Control Lists” on page 143.

An Atmos user may construct a “pre-authenticated” URL to a specific object that they may
then share with anyone. This allows an Atmos user to let a non-Atmos user download a
specific object. See “Providing anonymous access” on page 33.

Managing authentication
The web service uses a combination of the UID and other request headers to produce a
signature that authenticates the user accessing the web service. It uses a combination of
various pieces of the message to validate the identity of the sender, integrity of the
message, and non-repudiation of the action.

The UID is a unique, static value that identifies your application to the web service. To
complete the operation, you must generate a signature using the shared secret associated
with the UID. Without this information, your web-service application cannot be
authenticated by the server. For the UID and shared secret corresponding to your
application, contact your Atmos administrator.

Note: The shared secret is in base64-encoded form and needs to be base64 decoded
before it can be used. See the detailed explanation below in “REST authentication:
securing REST messages with signatures” on page 141.

The server retrieves the UID from the request and retrieves the shared secret associated
with that UID, stored on the server lockbox. The server then regenerates the signature
using the same algorithm as the client. If this signature matches the one in the request,
the web service processes the request and returns the response payload.

Timestamps

Atmos also uses timestamps to enforce a request-validity window. Each request is valid
for only a certain window of time from when the request was created on the client; the
request must arrive at the server within this window. This request-validity window is
designed to protect against replay attacks. If a request is received after this window, the
server rejects the request and returns an error to the client. The creation and expiration
times of the request are part of the header and are used for signature computation. This
ensures that any alteration to these values is detected by the server, and the request is
rejected. By default, this time window is plus or minus 5 minutes from the server time,
which is in UTC.
140 EMC Atmos Version 2.4 Programmer’s Guide

Security
REST authentication: securing REST messages with signatures
A client using the REST API composes the request and computes a hash of the request
using the algorithm for securing REST messages. The UID is stored in a custom HTTP
header which is x-emc-uid and is a part of the request. Then, a signature is computed by
applying HMAC-SHA1 on the hash and using the shared secret that maps to the UID in the
request. This signature is appended to the request and sent to the Web service for
comparison.

Signature

The header has the following format:

x-emc-signature : signature

The signature is defined as:

signature = Base64(HMACSHA1(HashString))

where Base64 is the base64 encoding of the argument and HMACSHA1 is the keyed hash of
the argument. The shared secret is used for computing HMACSHA1. The actual shared secret
is in binary format. This binary array of bytes is converted to a human-readable format by
base64-encoding it, and this encoded format is what a user receives from the Atmos
administrator. Make sure the shared secret is base64-decoded before using it as an input
to the HMACSHA1 algorithm to generate the signature.

For example, here is some Ruby code:

digest = HMAC.digest(Digest.new(SHA1), Base64.decode64(key),
HashString)
return Base64.encode64(digest.to_s()).chomp()

SHA1 is defined above. key is the base64-encoded shared secret that the user receives.
When you base64-encode a string, the resulting string may look like this: xxxxxxxxxxx\n.
You must call the chomp() function to remove the \n character at the end of the result
string.

HashString
HashString is computed as follows:

HTTPRequestMethod + '\n' +
ContentType + '\n' +
Range + '\n' +
Date + '\n' +
CanonicalizedResource + '\n' +
CanonicalizedEMCHeaders

where + is the concatenation operator.
REST authentication: securing REST messages with signatures 141

Security
Components of HashString are described in the following table.

Canonicalization of headers
Canonicalization of EMC headers is done as follows:

1. Remove any white space before and after the colon and at the end of the metadata
value. Multiple white spaces embedded within a metadata value are replaced by a
single white space. For example:

Before canonicalization:

x-emc-meta: title=Mountain Dew

After canonicalization:

x-emc-meta:title=Mountain Dew

2. Convert all header names to lowercase.

3. Sort the headers alphabetically.

4. For headers with values that span multiple lines, convert them into one line by
replacing any newline characters and extra embedded white spaces in the value.

5. Concatenate all headers together, using newlines (\n) separating each header from
the next one. There should be no terminating newline character at the end of the last
header.

Table 21 HashString Components

Field Description

HTTPRequestMethod One of the five HTTP method types, in uppercase: GET, POST,
PUT, DELETE, HEAD.

Content-Type Content type. Only the value is used, not the header name. If a
request does not include an HTTP body, this is an empty string.

Range Range header. Only the value is used, not the header name. If
a request does not include the range header, this is an empty
string.

Date (Optional: Date and/or x-emc-date must be in the request.)
Standard HTTP header, in UTC format. Only the date value is
used, not the header name. If a request does not include the
date header, this is an empty string, and the x-emc-date
header is then required.

CanonicalizedResource Path and Query portions of the HTTP request URI, in lowercase.
For example, when using the ACL operation (where the Query
is ?acl), the value of CanonicalizedResource would be:
/rest/objects/5ca1ab1e0a05737604847ff1f7a26

d04848167b63d9f?acl

When reading an object (where there is no Query), the value of
CanonicalizedResource would be:
/rest/objects/5ca1ab1e0a05737604847ff1f7a26

d04848167b63d9f

CanonicalizedEMCHeaders Refer to the process below for canonicalizing EMC headers.
142 EMC Atmos Version 2.4 Programmer’s Guide

Security
REST example Request

POST /rest/objects HTTP/1.1
x-emc-listable-meta: part4/part7/part8=quick
x-emc-meta: part1=buy
accept: */*
x-emc-useracl: john=FULL_CONTROL,mary=WRITE
date: Thu, 05 Jun 2008 16:38:19 GMT
content-type: application/octet-stream
x-emc-date: Thu, 05 Jun 2008 16:38:19 GMT
x-emc-groupacl: other=NONE
host: 10.5.115.118
content-length: 4286
x-emc-uid: 6039ac182f194e15b9261d73ce044939/user1

REST example HashString
POST

application/octet-stream

Thu, 05 Jun 2008 16:38:19 GMT
/rest/objects
x-emc-date:Thu, 05 Jun 2008 16:38:19 GMT
x-emc-groupacl:other=NONE
x-emc-listable-meta:part4/part7/part8=quick
x-emc-meta:part1=buy
x-emc-uid:6039ac182f194e15b9261d73ce044939/user1
x-emc-useracl:john=FULL_CONTROL,mary=WRITE

Note that there is a blank line included in the above example to account for the missing
Range header.

If you use the following key:

LJLuryj6zs8ste6Y3jTGQp71xq0=

on the hash string above, you will generate the following signature:

WHJo1MFevMnK4jCthJ974L3YHoo=

Access Control Lists
UIDs are used for both authentication and controlling access to objects using ACLs. By
default, no UID except the owner of an object has any access to the object. The owner may
choose to grant access to any UID under the same subtenant as himself. The access level
can be READ, WRITE, or FULL_CONTROL. ACLs also can be used to revoke permission to
specific UIDs.

Note: ACLs cannot be used to grant access to UIDs across different subtenants.

For details on user ACLs for your application, contact your Atmos administrator.

REST ACLs

You set user-level authorization with the x-emc-groupacl or x-emc-useracl headers, which
define access control for objects (see “Atmos custom headers” on page 52). Access
control for files and directories is done with standard file-system commands like chmod.
Access Control Lists 143

Security
REST example request
The following example shows a request for the SetACL method.

• The x-emc-useracl: fred=FULL_CONTROL header specifies full access control for one
user, fred.

• The x-emc-groupacl: other=READ header specifies group read attributes for the object.

POST /rest/objects/5ca1ab1e0a05737604847ff1f7a26d04848167b63d9f?acl
HTTP/1.1
accept: */*
x-emc-useracl: fred=FULL_CONTROL
date: Thu, 05 Jun 2008 16:38:23 GMT
content-type: application/octet-stream
x-emc-date: Thu, 05 Jun 2008 16:38:23 GMT
x-emc-groupacl: other=READ
host: 10.5.115.118
x-emc-uid: 6039ac182f194e15b9261d73ce044939/user1
x-emc-signature: MDaCy5+1t7ZYdglRxpIOrF4K1hU=

REST example response
HTTP/1.1 200 OK

Date: Thu, 05 Jun 2008 16:38:23 GMT
Server: Apache/2.0.61 (rPath)
Content-Length: 0
Connection: close
Content-Type: text/plain; charset=UTF-8
144 EMC Atmos Version 2.4 Programmer’s Guide

CHAPTER 7
Reserved Namespace for Extended Attributes

This chapter describes the Atmos reserved namespace for extended attributes.

• Overview... 146
• Linux extended attributes ... 146
• Atmos extended attributes.. 146
Reserved Namespace for Extended Attributes 145

Reserved Namespace for Extended Attributes
Overview
For each file/object, there is a protected namespace — user.maui.* — for extended
attributes. The namespace can be accessed via the file system using the Atmos installable
file system and through the Linux extended-attribute command-line utilities, getfattr and
setfattr. When the installable file system is used, Atmos layers user-metadata access
across POSIX extended attributes; some system metadata also can be accessed through
the extended-attribute mechanism (see below).

The user.maui extended-attribute namespace is reserved; for example, EMC controls the
contents of the namespace and the format of its fields. Some of the xattrs are exposed to
applications (see the table in “Capability” on page 147.”) As noted in the table, some
xattrs can be only queried, others can be queried and modified. Applications cannot
create new xattrs in this namespace. Failure to follow the defined contents and format of
the namespace results in undefined behavior and may lead to future failures or
inconsistencies.

Linux extended attributes
Extended attributes are name:value pairs associated permanently with files and
directories, similar to the environment strings associated with a process. An attribute may
be defined or undefined. If it is defined, its value may be empty or non-empty.

Extended attributes are extensions to normal attributes. Often, they are used to provide
additional functionality to a file system.

Users with search access to a file or directory may retrieve a list of attribute names defined
for that file or directory.

Extended attributes are accessed as atomic objects. Reading retrieves the whole value of
an attribute and stores it in a buffer. Writing replaces any previous value with the new
value.

For more information, see the extended-attribute manual page. On a Linux system, you
can query this with:

man 5 attr

Atmos extended attributes
The protected namespace contains the following attributes:

Table 22 Attributes in the Protected Namespace (page 1 of 2)

Attribute
Can
Query?

Can
Set? See...

capability X “Capability” on page 147

expirationEnable X X “Expiration of objects” on page 147

expirationEnd X X “Expiration of objects” on page 147

lso X “Layout storage object” on page 148

mdsmaster X “MDS (Metadata Service)” on page 149
146 EMC Atmos Version 2.4 Programmer’s Guide

Reserved Namespace for Extended Attributes
Capability

Generically, a capability is an unforgeable token of authority. A capability is granted to an
application by an MDS when the application successfully opens an object for access.
Subsequently, the capability can be passed by the application to storage servers, to prove
to the storage server that the MDS has authorized the application to access the object. The
capability transfers notice of the MDS's authorization to the storage servers in a secure
manner through the client.

When this is queried, "unavailable" is returned if the client does not have a capability.

Get example
getfattr -n user.maui.capability /mnt/mauifs/bar
getfattr: Removing leading '/' from absolute path names
file: mnt/mauifs/bar
user.maui.capability="unavailable"

Expiration of objects

An expiration period is a period after which the data is deleted. Object expiration is
controlled by policies. You can change the policy parameter value in the object directly.
The parameters are accessible as if they were user-metadata attributes of the object. The
policy attributes have Atmos-specific reserved names to distinguish them from
user-defined attributes. The reserved names are:

• user.maui.expirationEnable: Of type string ("true" or "false")

• user.maui.expirationEnd:Of type xsd:dateTime (for example, 2008-04-16T10:00:00Z)

You can get/set these attributes through either the file-system interface (the
getfattr/setattr examples shown below) or the object interface (GetUserMetadata
/SetUserMetadata).

mdsreplicas X “MDS (Metadata Service)” on page 149

nlink X “Number of links” on page 149

objectid X “Object ID” on page 150

objState X objState is an internal field and not relevant
for users.

queues X “Queues” on page 150

refCount X “Reference count” on page 150

retentionEnable X X “Retention of objects” on page 150

retentionEnd X X “Retention of objects” on page 150

stats X X “Statistics” on page 151

tracer X X “Log tracing” on page 151

updateNum X “updateNum” on page 152

Table 22 Attributes in the Protected Namespace (page 2 of 2)

Attribute
Can
Query?

Can
Set? See...
Atmos extended attributes 147

Reserved Namespace for Extended Attributes
Note: Expiration applies to files, not directories.

Note: These policy attributes cannot be created in an object using the calls to
setfattr/MauiClientSetUserMetadata(). The attributes must exist as a result of policy
application, to be retrieved or updated.

Get and set examples
getfattr -n user.maui.expirationEnd /mnt/mauifs/CIFS/boat1.jpg

getfattr: Removing leading '/' from absolute path names
file: mnt/mauifs/CIFS/boat1.jpg
user.maui.expirationEnd="2009-04-04T23:22:14Z"

getfattr -n user.maui.expirationEnable /mnt/mauifs/CIFS/boat1.jpg
getfattr: Removing leading '/' from absolute path names

file: mnt/mauifs/CIFS/boat1.jpg user.maui.expirationEnable="true"

setfattr -n user.maui.expirationEnd -v 2009-05-04T23:22:14Z
/mnt/mauifs/CIFS/boat1.jpg

getfattr -n user.maui.expirationEnd /mnt/mauifs/CIFS/boat1.jpg
getfattr: Removing leading '/' from absolute path names

file: mnt/mauifs/CIFS/boat1.jpg
user.maui.expirationEnd="2009-05-04T23:22:14Z"

setfattr -n user.maui.expirationEnable -v false
/mnt/mauifs/CIFS/boat1.jpg

getfattr -n user.maui.expirationEnable /mnt/mauifs/CIFS/boat1.jpg
getfattr: Removing leading '/' from absolute path names

file: mnt/mauifs/CIFS/boat1.jpg user.maui.expirationEnable="false"

Layout storage object

A Layout Storage Object (LSO) is a data structure that describes how the data in an object
is allocated on one or more SSs (for example, replication, striping, and chunking into
extents).

Get example
getfattr -n user.maui.lso /mnt/mauifs/bar
getfattr: Removing leading '/' from absolute path names

file: mnt/mauifs/bar user.maui.lso="<?xml version=\"1.0\"
encoding=\"UTF-8\" standalone=\"no\"?>\012<maui:Lso
xmlns:maui=\"http://www.emc.com/maui\"
xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"
xsi:schemaLocation=\"http://www.emc.com/maui lso.xsd\"
xsi:type=\"maui:LsoReplica\">\012 <type>Replica</type>\012

<id>1</id>\012 <refcnt>1</refcnt>\012 <replica>\012
<type>sync</type>\012 <current>true</current>\012
<queryStr>for $h
in CLUSTER/HOST where
$h/METRIC[@NAME=\"mauiss_status\"]/@VAL=\"up\"</queryStr
>\012
<revision>2</revision>\012 <child
xsi:type=\"maui:LsoExtent\">\012
148 EMC Atmos Version 2.4 Programmer’s Guide

Reserved Namespace for Extended Attributes
<type>Extent</type>\012 <id>3</id>\012
<refcnt>1</refcnt>\012
<extent>\012 <offset>0</offset>\012
<length>0</length>\012
<child xsi:type=\"maui:LsoPhysical\">\012
<type>Physical</type>\012 <id>2</id>\012
<refcnt>1</refcnt>\012 <ssaddr>\012
<service>SS</service>\012
<host>indy-003</host>\012 <port>10301</port>\012
<location>Indy</location>\012 </ssaddr>\012
<capacity>0</capacity>\012 <osdid>89</osdid>\012
</child>\012
</extent>\012 </child>\012 </replica>\012 <replica>\012
<type>sync</type>\012 <current>true</current>\012
<queryStr>for $h
in CLUSTER/HOST where
$h/METRIC[@NAME=\"mauiss_status\"]/@VAL=\"up\"</queryStr
>\012
<revision>2</revision>\012 <child
xsi:type=\"maui:LsoExtent\">\012
<type>Extent</type>\012 <id>5</id>\012
<refcnt>1</refcnt>\012
<extent>\012 <offset>0</offset>\012
<length>0</length>\012
<child xsi:type=\"maui:LsoPhysical\">\012
<type>Physical</type>\012 <id>4</id>\012
<refcnt>1</refcnt>\012 <ssaddr>\012
<service>SS</service>\012
<host>indy-001</host>\012 <port>10301</port>\012
<location>Indy</location>\012 </ssaddr>\012
<capacity>0</capacity>\012 <osdid>88</osdid>\012
</child>\012
</extent>\012 </child>\012 </replica>\012
<revision>1</revision>\012
<creatLoc>Indy</creatLoc>\012</maui:Lso>\012"

MDS (Metadata Service)

The MDS is where metadata is stored and managed. mdsmaster is the MDS that is hosting
the database master for the object. mdsreplicas are the MDS(s) that are hosting the
database slave(s) for the object.

Get examples
getfattr -n user.maui.mdsmaster /mnt/mauifs/bar
getfattr: Removing leading '/' from absolute path names

file: mnt/mauifs/bar
user.maui.mdsmaster="indy-001:10401:Indy"

getfattr -n user.maui.mdsreplicas /mnt/mauifs/bar
getfattr: Removing leading '/' from absolute path names

file: mnt/mauifs/bar
user.maui.mdsreplicas="indy-002:10401"

Number of links

nlink is the number of hard links to a file. This is a system-metadata field, generally not
relevant to a user application. Hard links are not currently supported, so this always
returns 1.
Atmos extended attributes 149

Reserved Namespace for Extended Attributes
Get examples
getfattr -n user.maui.nlink /mnt/mauifs/bar
getfattr: Removing leading '/' from absolute path names

file: mnt/mauifs/bar
user.maui.nlink="1"

Object ID

objectid is the object ID; for example,
4924264aa10573d404924281caf51f049242d810edc8.

Get example
getfattr -n user.maui.objectid /mnt/mauifs/bar
getfattr: Removing leading '/' from absolute path names

file: mnt/mauifs/bar
user.maui.objectid="49a660fb0000000000000000000000049a7d 8ea59701"

Queues

queues reports the length of the event queues inside the client library. This is for
developer debugging and not relevant for users.

Reference count

refCount is not currently used. It always returns 0.

Get example
getfattr -n user.maui.refCount /mnt/mauifs/bar
getfattr: Removing leading '/' from absolute path names

file: mnt/mauifs/bar user.maui.refCount="0"

Retention of objects

A retention period is a period during which the data cannot be modified. Object retention
is controlled by policies, and the default retention period, unless specified differently in
the policy specification, is 0 seconds.

You can change the policy parameter value in the object directly. The parameters are
accessible as if they were user-metadata attributes of the object. The policy attributes
have Atmos-specific reserved names to distinguish them from user-defined attributes. The
reserved names are:

• user.maui.retentionEnable— Of type string ("true" or "false")

• user.maui.retentionEnd— Of type xsd:dateTime (for example, 2008-04-16T10:00:00Z)

You can get/set these attributes through either the file-system interface (the
getfattr/setattr examples shown below) or the object interface (GetUserMetadata
/SetUserMetadata).

You can use user.maui.retentionEnd to lengthen the retention period, but you cannot use
it shorten it or set it to a time in the past.
150 EMC Atmos Version 2.4 Programmer’s Guide

Reserved Namespace for Extended Attributes
Objects created by a compliant subtentant cannot turn off retention by setting
user.maui.retentionEnable to false.

Note: These policy attributes cannot be created in an object using the calls to
setfattr/MauiClientSetUserMetadata(). The attributes must exist as a result of policy
application, to be retrieved or updated.

Get and set examples
getfattr -n user.maui.retentionEnable /mnt/mauifs/CIFS/boat1.jpg
getfattr: Removing leading '/' from absolute path names

file: mnt/mauifs/CIFS/boat1.jpg user.maui.retentionEnable="true"

getfattr -n user.maui.retentionEnd /mnt/mauifs/CIFS/boat1.jpg
getfattr: Removing leading '/' from absolute path names

file: mnt/mauifs/CIFS/boat1.jpg
user.maui.retentionEnd="2009-03-05T23:22:14Z"

setfattr -n user.maui.retentionEnd -v 2009-03-06T23:22:14Z
/mnt/mauifs/CIFS/boat1.jpg

getfattr -n user.maui.retentionEnd
/mnt/mauifs/CIFS/boat1.jpg
getfattr: Removing leading '/' from absolute path names

file: mnt/mauifs/CIFS/boat1.jpg
user.maui.retentionEnd="2009-03-06T23:22:14Z"

setfattr -n user.maui.retentionEnable -v false
/mnt/mauifs/CIFS/boat1.jpg
getfattr -n user.maui.retentionEnable /mnt/mauifs/CIFS/boat1.jpg
getfattr: Removing leading '/' from absolute path names

file: mnt/mauifs/CIFS/boat1.jpg
user.maui.retentionEnable="false"

getfattr -n user.maui.retentionEnd
/mnt/mauifs/CIFS/boat1.jpg
getfattr: Removing leading '/' from absolute path names

file: mnt/mauifs/CIFS/boat1.jpg
user.maui.retentionEnd="NONE"

Statistics

stats enables querying to return the performance metrics collected for the internal client
library. Valid values to set are reset/clear, enable, and disable. This is for developer
debugging and not relevant for users.

Log tracing

tracer can be set but not queried. When it is set (to any value), the logging configuration
file is re-read. This is for developer debugging and not relevant for users
Atmos extended attributes 151

Reserved Namespace for Extended Attributes
updateNum

updateNum is used by the asynchronous-replication mechanism to determine when a
replica is current. This is internal metadata and not relevant to users.
152 EMC Atmos Version 2.4 Programmer’s Guide

CHAPTER 8
Error Messages and Status Codes

This chapter lists the codes that are trapped and returned during web-service operations.

◆ REST information... 154
◆ Error codes.. 154
Error Messages and Status Codes 153

Error Messages and Status Codes
REST information
When the operations are invoked using the REST interface and an exception occurs, the
server returns an HTTP error, along with a detailed error message in the response body,
which contains the error code and error description.

HTTP/1.1 404 Not Found
Date: Thu, 31 Jan 2008 20:03:24 GMT
Server: Apache/2.0.61 (rPath)
Content-Length: 131
Connection: close
Content-Type: text/xml

<?xml version='1.0' encoding='UTF-8'?>
<Error>
<Code>1003</Code>
<Message>The requested object was not found.</Message>
</Error>

Error codes
lists the HTTP status codes and descriptions for REST operations:.

Table 23 HTTP status codes for REST (page 1 of 4)

Error
Code Error Message

HTTP
Status
Code HTTP Status Description

1001 The server encountered an internal error.
Please try again.

500 Internal Server Error

1002 One or more arguments in the request were
invalid.

400 Bad Request

1003 The requested object was not found. 404 Not Found

1004 The specified range cannot be satisfied. 416 Requested Range Not
Satisfiable

1005 One or more metadata tags were not found for
the requested object.

400 Bad Request

1006 Operation aborted because of a conflicting
operation in process against the resource.

Note: This error code may indicate that the
system is temporarily too busy to process the
request. This is a non-fatal error; you can re-try
the request later.

409 Conflict

1007 The server encountered an internal error.
Please try again.

500 Internal Server Error

1008 The requested resource was not found on the
server.

400 Bad Request

1009 The method specified in the Request is not
allowed for the resource identified.

405 Method Not Allowed

1010 The requested object size exceeds the
maximum allowed upload/download size.

400 Bad Request
154 EMC Atmos Version 2.4 Programmer’s Guide

Error Messages and Status Codes
1011 The specified object length does not match the
actual length of the attached object.

400 Bad Request

1012 There was a mismatch between the attached
object size and the specified extent size.

400 Bad Request

1013 The server encountered an internal error.
Please try again.

500 Internal Server Error

1014 The maximum allowed metadata entries per
object has been exceeded.

400 Bad Request

1015 The request could not be finished due to
insufficient access privileges.

401 Unauthorized

1016 The resource you are trying to create already
exists.

400 Bad Request

1019 The server encountered an I/O error. Please try
again.

500 Internal Server Error

1020 The requested resource is missing or could not
be found.

500 Internal Server Error

1021 The requested resource is not a directory. 400 Bad Request

1022 The requested resource is a directory. 400 Bad Request

1023 The directory you are attempting to delete is
not empty.

400 Bad Request

1024 The server encountered an internal error.
Please try again.

500 Internal Server Error

1025 The server encountered an internal error.
Please try again.

500 Internal Server Error

1026 The server encountered an internal error.
Please try again.

500 Internal Server Error

1027 The server encountered an internal error.
Please try again.

500 Internal Server Error

1028 The server encountered an internal error.
Please try again.

500 Internal Server Error

1029 The server encountered an internal error.
Please try again.

500 Internal Server Error

1031 The request timestamp was outside the valid
time window.

403 Forbidden

1032 There was a mismatch between the signature
in the request and the signature as computed
by the server.

403 Forbidden

1033 Unable to retrieve the secret key for the
specified user.

403 Forbidden

1034 Unable to read the contents of the HTTP body. 400 Bad Request

1037 The specified token is invalid. 400 Bad Request

Table 23 HTTP status codes for REST (page 2 of 4)

Error
Code Error Message

HTTP
Status
Code HTTP Status Description
Error codes 155

Error Messages and Status Codes
1040 The server is busy. Please try again 500 Internal Server Error

1041 The requested filename length exceeds the
maximum length allowed.

400 Bad Request

1042 The requested operation is not supported. 400 Bad Request

1043 The object has the maximum number of links 400 Bad Request

1044 The specified parent does not exist. 400 Bad Request

1045 The specified parent is not a directory. 400 Bad Request

1046 The specified object is not in the namespace. 400 Bad Request

1047 Source and target are the same file. 400 Bad Request

1048 The target directory is not empty and may not
be overwritten

400 Bad Request

1049 The checksum sent with the request did not
match the checksum as computed by the
server

400 Bad Request

1050 The requested checksum algorithm is different
than the one previously used for this object.

400 Bad Request

1051 Checksum verification may only be used with
append update requests

400 Bad Request

1052 The specified checksum algorithm is not
implemented.

400 Bad Request

1053 Checksum cannot be computed for an object
on update for which one wasn’t computed at
create time.

400 Bad Request

1054 The checksum input parameter was missing
from the request.

400 Bad Request

1056 The requested operation is not supported for
symlinks.

400 Bad Request

1057 If-Match precondition failed. 412 Precondition failed

1058 If-None-Match precondition failed. 412 Precondition failed

1059 The key you are trying to create already exists. 400 Bad Request

1060 The requested key was not found. 404 Not found

1061 The requested pool already exists. 400 Bad Request

1062 The requested pool was not found. 404 Not found

1063 The maximum number of pools has been
reached.

400 Bad request

1064 The request could not be completed because
the subtenant is over quota

403 Forbidden

Table 23 HTTP status codes for REST (page 3 of 4)

Error
Code Error Message

HTTP
Status
Code HTTP Status Description
156 EMC Atmos Version 2.4 Programmer’s Guide

Error Messages and Status Codes
HTTP Success Codes

lists the HTTP status codes and descriptions for REST operations:

1065 The request could not be completed because
the UID is over quota

403 Forbidden

1070 Did not receive the expected amount of data. 400 Bad request

1071 Client closed connection before reading all
data.

499 Client Closed Request

1072 Could not write all bytes to the client. 499 Client Closed Request

1073 Timeout writing data to the client. 499 Client Closed Request

Table 23 HTTP status codes for REST (page 4 of 4)

Error
Code Error Message

HTTP
Status
Code HTTP Status Description

Table 24 HTTP success codes

HTTP Status
Code

HTTP Status
Description Description

200 OK The request has succeeded.

201 Created The request has been fulfilled.
For createobject and version object operations, it means that
new object was successfully created.

204 No Content The request has been fulfilled, and no content is being sent
with the response. This applies to DeleteObject and
DeleteUserMetadata requests.

206 Partial Content The server has fulfilled the partial GET request for the object.
This applies to ReadObject requests that include the Range
header).
Error codes 157

Error Messages and Status Codes
158 EMC Atmos Version 2.4 Programmer’s Guide

INDEX
A
access rights 61
ACL 83, 143

set 130
atime 9

C
CanonicalizedEMCHeaders 142
CanonicalizedResource 142
capability 146
checksum 12
Content-Length 50
Content-Type 50, 142
create

namespace interface 73
creating

a directory 26
a file 26

ctime 9
custom headers 52

D
Date 50, 142
delete metadata

namespace interface 80
object interface 77

delete object
namespace interface 77
object interface 76

Directory
listing 112

directory
creating 26
listing 27

E
EMC online support website 5
endpoint 66

namespace 66
object 66

error handling
REST 154

Expect 51
expirationEnable 146
expirationEnd 146

F
file

creating 26
reading 28

G
gid 9

H
headers

custom 52
standard 50

HTTP
custom headers 52
error codes 154
standard headers 50
success codes 157

HTTPRequestMethod 142

I
interface

namespace 12, 26
object 22

itime 9

L
listable user metadata 11
listing a directory 27
Listing directory contents 112
lso 146

M
mdsmaster 146
mdsreplicas 147
metadata

system 9
user 10, 11

mtime 9

N
namespace

extended attribute 146
naming rules 67
protected 146

namespace endpoint 66
namespace interface 12

delete user metadata 80
get ACL 84
get listable tags 87
get object info 89
get system metadata 95
get user metadata 99
listing user metadata tags 111
reading objects 119
rename directory 127
rename file 127
set ACL 131
EMC Atmos Version 2.4 Programmer’s Guide 159

Index
set user metadata 134
update object 137

nlink 9, 147
non-listable user metadata 10

O
object endpoint 66
object interface 22

delete user metadata 78
get ACL 84
get listable tags 86
get object info 88
get system metadata 93
get user metadata 96
listing user metadata 110
reading objects 114
set ACL 131
set user metadata 132
update object 136

objectid 9, 147
objname 10
objState 147

P
policyname 10

Q
queues 147

R
Range 142

 51
reading

a file 28
refCount 147
request-validity window 140
REST

ACL 143
REST endpoint 66
retentionEnable 147
retentionEnd 147

S
security

web services 140
size 10
stats 147
system metadata 9

getting 92

T
timestamps 140
tracer 147
type 10

U
UID 140
uid 10
updateNum 147
user metadata 96

delete 78
listable 11
listing tags 109
non-listable 10

W
web services

security 140

X
x-emc-date 54
x-emc-delta 54
x-emc-groupacl 55
x-emc-include-meta 55
x-emc-limit 55
x-emc-listable-meta 56
x-emc-listable-tags 56
x-emc-meta 57
x-emc-policy 58
x-emc-signature 59, 141
x-emc-system-tags 59
x-emc-tags 60
x-emc-token 60
x-emc-uid 61
x-emc-unencodable-meta 61
x-emc-useracl 61, 62
x-emc-user-tags 61
x-emc-wschecksum 63
160 EMC Atmos Version 2.4 Programmer’s Guide

	Preface
	About the Atmos API
	Overview
	About the object interface
	About the namespace interface

	System metadata
	User metadata
	Non-listable user metadata
	Listable user metadata
	Object tagging guidelines

	Using the namespace interface
	Namespace interface dos and don’ts

	Checksum protection
	Checksum and system metadata

	The version object API
	Versioned objects with other Atmos features
	Restrictions

	Unicode Support
	Percent Encoding

	Getting better write performance

	Getting started with the Atmos REST API
	REST commands
	Object interface examples
	Example: Creating an object
	Example: Creating an object with non-listable user metadata
	Example: Setting (non-listable) user metadata
	Example: Creating an object with listable metadata tags
	Example: Setting listable metadata tags

	Namespace interface examples
	Example: Creating a directory
	Example: Creating a file in a directory
	Example: Listing a directory
	Example: Reading a file
	Example: Reading part of a file
	Example: Updating a file

	Using HTML forms to create and update content
	Sample form
	Limits/Restrictions/Recommendations

	Providing anonymous access
	Using shareable URLs
	Using access tokens for anonymous upload and download

	Using Amazon S3 Applications with Atmos
	Using S3 with Atmos
	S3 Bucket configuration and performance
	S3 bucket addressing
	Configuration errors

	Common REST Headers
	Standard HTTP headers
	Content-Length
	Content-Type
	Date
	Expect
	Location
	Range

	Atmos custom headers
	x-emc-accept
	x-emc-auth-ver
	x-emc-date
	x-emc-delta
	x-emc-force
	x-emc-force-overwrite
	x-emc-groupacl
	x-emc-include-meta
	x-emc-limit
	x-emc-listable-meta
	x-emc-listable-tags
	x-emc-meta
	x-emc-objectid
	x-emc-path
	x-emc-policy
	x-emc-redirect-url
	x-emc-signature
	x-emc-system-tags
	x-emc-tags
	x-emc-token
	x-emc-uid
	x-emc-unencodable-meta
	x-emc-user-tags
	x-emc-useracl
	x-emc-utf8
	x-emc-wschecksum

	REST API Reference
	Specifying objects/files in REST commands
	Namespace access

	REST commands
	Creating an access token
	HTTP Method
	Object interface URI
	Request parameters
	Object interface examples

	Creating an object
	Permissions
	HTTP method
	Object interface URI
	Namespace interface URI
	Request headers
	Object interface examples
	Namespace interface examples

	Creating a version
	Permissions
	HTTP method
	Object interface URI
	Namespace interface URI
	Request headers
	Object interface examples

	Deleting an access token
	HTTP Method
	Object interface URI
	Request parameters
	Object interface examples

	Deleting an object
	Permissions
	HTTP method
	Object interface URI
	Namespace interface URI
	Request headers
	Object interface examples
	Namespace interface examples

	Deleting user metadata
	Permissions
	HTTP method
	Object interface URI
	Namespace interface URI
	Request headers
	Object interface examples
	Namespace interface examples

	Deleting a version
	Permission
	HTTP method
	URI
	Request headers
	Object interface examples

	Downloading content anonymously
	HTTP Method
	Object interface URI
	Namespace interface URI
	Object interface example

	Getting access token info
	HTTP Method
	Object interface URI
	Request parameters
	Object interface examples

	Getting an ACL
	Permissions
	HTTP method
	Object interface URI
	Namespace interface URI
	Request parameters
	Object interface examples
	Namespace interface examples

	Getting listable tags
	Permissions
	HTTP method
	Object interface URI
	Namespace interface URI
	Request parameters
	Object interface examples
	Namespace interface examples

	Getting object info
	Permissions
	HTTP method
	Object interface URI
	Namespace interface URI
	Request parameters
	Object interface examples
	Namespace interface examples

	Getting service information
	Permissions
	HTTP method
	URI
	Request parameters
	Examples

	Getting system metadata
	Permissions
	HTTP method
	Object interface URI
	Namespace interface URI
	Request parameters
	Object interface examples
	Namespace interface examples

	Getting user metadata
	Permissions
	HTTP method
	Object interface URI
	Namespace interface URI
	Request parameters
	Object interface examples
	Namespace interface examples

	Listing access tokens
	HTTP Method
	Object interface URI
	Request parameters
	Object interface examples

	Listing objects
	Permissions
	HTTP method
	Object interface URI
	Namespace interface URI
	Request parameters
	Object interface examples

	Listing user metadata tags
	Permissions
	HTTP method
	Object interface URI
	Namespace interface URI
	Request parameters
	Object interface examples
	Namespace interface examples

	Listing versions
	Permissions
	HTTP method
	Object interface URI
	Namespace interface URI
	Request parameters
	Object interface

	Reading an object
	Permissions
	HTTP method
	Object interface URI
	Namespace interface URI
	Request parameters
	Object interface examples
	Namespace interface examples
	Namespace interface — Directory listing examples

	Renaming a file or directory in the namespace
	Permissions
	HTTP method
	Object interface URI
	Namespace interface URI
	Request parameters
	Namespace interface examples

	Restoring a version
	Permissions
	HTTP method
	Object interface URI
	Object interface examples

	Setting an ACL
	Permissions
	HTTP method
	Object interface URI
	Namespace interface URI
	Request parameters
	Object interface examples
	Namespace interface examples

	Setting user metadata
	Permissions
	HTTP method
	Object interface URI
	Namespace interface URI
	Request parameters
	Object interface examples
	Namespace interface examples

	Updating an object
	Updating checksummed objects
	Permissions
	HTTP method
	Object interface URI
	Namespace interface URI
	Request parameters
	Object interface examples
	Namespace interface examples

	Security
	Overview
	Managing authentication
	Timestamps

	REST authentication: securing REST messages with signatures
	Signature
	REST example Request

	Access Control Lists
	REST ACLs

	Reserved Namespace for Extended Attributes
	Overview
	Linux extended attributes
	Atmos extended attributes
	Capability
	Expiration of objects
	Layout storage object
	MDS (Metadata Service)
	Number of links
	Object ID
	Queues
	Reference count
	Retention of objects
	Statistics
	Log tracing
	updateNum

	Error Messages and Status Codes
	REST information
	Error codes
	HTTP Success Codes

	Index

