

This document contains information on these topics:

Contents

Introduction .. 2

Architecture .. 3

Database collection and retention policy .. 3

Mapping files .. 4

Storage statistics collection .. 5

Support matrix .. 6

Creating guest user ... 6

EMC Unisphere for VMAX
Database Storage Analyzer
V8.1

Technical Notes
P/N H14606
REV 01
October 7, 2015

TECHNICAL NOTES

Introduction

2 Database Storage Ana lyzer Tec hnic a l Notes

Introduction
Database Storage Analyzer (DSA) is an application that provides a database to
storage performance troubleshooting solution for Oracle and SQL Server databases
running on EMC Symmetrix and VMAX storage systems.

This document describes how DSA collects data and the prerequisites that you
should be aware of prior to installing the application.

DSA is a feature of the Unisphere for VMAX Foundation Suite. It supports database to
storage correlation by providing a shared view of how performance issues correlate to
database and storage level activities. This view is accessible by database
administrators (DBAs) and storage administrators (SAs). The view presents I/O
metrics such as input/output operations per second (IOPS), throughput and response
time from both the data base and the storage system, which helps to immediately
identify gaps between the database I/O performance and the storage I/O
performance.

Note the following:

 Unisphere for VMAX is the only software requirement.

 There is no additional cost to use DSA.

 DSA currently supports Symmetrix systems running Enginuity 5671 – 5876
and VMAX systems running HYPERMAX OS 5977 or higher.

 There is no need to allocate any additional resources for the Unisphere server
other than what is specified in the Unisphere for VMAX documentation.

KEY FEATURES ADDED IN 8.1:

Hinting

With Version 8.1 DSA introduces the new Hinting feature. This feature provides a way
to improve application performance by sending hints to the array for data that is likely
to be accessed in a given period of time.

The idea is to allow customers to accelerate mission critical processes by leveraging
the hinting feature in the platform.

The user would be able to set hints from the analytics tab in the DSA interface while
going through a simple process of selecting the relevant objects and then setting the
priority and the time when the hint would be running.

Offering the capability for Hosts to provide hints is critical for enhancing FAST VP to
be “Application aware” as well ensure SLO compliance.

Note that Hinting would be supported for VMAX3 with HYPERMAX OS 5977 or higher
and for Oracle 10G and above (Hinting is not supported for SQL Server in this release)
Also, Hinting is not supported for databases running on virtual environments other
than VMware with RDM configuration.

Architecture

 3 Database Storage Ana lyzer Tec hnic a l Notes

SQL Server support

With Version 8.1 DSA support for SQL server was added in a similar way as for Oracle
so customers would have a high level DB/Storage correlation view as well as a deep
dive view showing database sessions and objects correlated to their Symmetrix
devices.

Note that this functionality is available for both VMAX2 and VMAX3
However, in this release hinting are not part of the SQL Server version.

Architecture
DSA runs in Unisphere under Jboss. It uses the same Postgress DB as a repository for
its information as other Unisphere applications, such as Performance Analyzer (PA)
and Workload Planner (WLP).

Database collection and retention
policy
For Oracle

DSA collects information by connecting directly to the monitored database through a
database user. This read-only user only has select permissions on a fixed list of
Oracle dictionary tables.

Mapping files

4 Database Storage Ana lyzer Tec hnic a l Notes

For a detailed list of the tables being access by DSA, refer to the Error! Reference
source not found. section.

DSA fetches data every 5 minutes and sends it back to the Unisphere repository
database (Postgress DB) where it aggregates the data into hourly and daily
aggregations. By default, DSA saves the fetched data for 15 days; however, you can
extend this period to 30 days. DSA saves the hourly aggregations for 15 months and
the daily aggregations for 2 years; however, you can extend both periods up to 3
years.

In addition to the 5min collection there is also a nightly process that accesses the
database once a day at around 12:00am in order to update the dictionary information
about objects and extents.

To connect to the monitored database, you need to open the database TNS port
(usually 1521 or 1525) between the Unisphere repository server and the monitored
database server.

For SQL Server

DSA collects information by connecting directly to the monitored database through a
database user. DSA fetches data dictionary data and activity data directly from the
SQL Server tables.

The user can be created during the installation process or DBAs can create it
manually prior to running the “Add database” option.

The DSA user needs to have SYSADMIN privileges. Note that SYSADMIN role is
required in order to collect object extent data using a command called DBCC
EXTENTINFO. This process runs once a day.

However, DSA login can be created with read only privileges, yet any functionality
associated with object collection would be disabled.

DSA can work with both “Windows Authentication Mode” and “SQL Server
Authentication Mode” with either SQL Server “local” user or as windows
authenticated user. In any case those users need to have SA permission.

Mapping files
The mapping process is responsible for mapping the Oracle or SQL Server files to the
storage system devices. By default, the process runs once a week, however, you can
configure it to run at different times.

During device mapping, the list of database files is copied using SSH to the
monitored database host. A process executing on the monitored database host
identifies the host physical devices associated with the Oracle files, and then sends
the list back to be loaded into the DSA repository.

An executable called Mapper is copied to the remote server with a list of Oracle
datafiles to map. The mapper contains a solution enabler library called SRMlite so

Storage statistics collection

 5 Database Storage Ana lyzer Tec hnic a l Notes

there is no need to install SE on the host. The Mapper uses the SYMAPI infrastructure
and calls the same APIs as the following Solutions Enabler (SYMCLI) commands:

 symrslv identify—Identifies whether the storage object is a file, ASM
file, logical volume or a host physical device (disk).

 symhostfs—Maps the oracle datafile to its filesystem device.

 symlv show —Maps a logical volume to its disks. In case the storage object
is identified as an ASM file, this command inquires symrslv pd – to get the
storage device and array for a given disk.

 symrslv pd—Gets the storage device and array for a given disk.

For Oracle running on Linux/Unix - To run the above commands, DSA requires root or
sudo user and an open SSH port between the Unisphere server and the database
host. The installation program will prompt for the root password or a sudo user.
This is an automated process that requires no manual intervention.

For SQL Server - In order to map database files to Symmetrix devices, the user needs
to install a DSA Listener on the monitored environment. The listener should be
manually installed before adding the new monitored database. In order to install the
DSA listener on the monitored environment, go to the administration tab in DSA, click
on “Add database” and then click DSA Listener to download it, copy it to the
monitored environment and then follow the instructions in the readme.txt file.
Note that the default port for the DSA listener is 22200 but it is configurable.

The password is kept encrypted in Unisphere using the standard Unisphere
encryption method.

Impact on the monitored server: DSA should not impact database activity. In general,
DSA may take up to 3% of one CPU.

Mapping on databases running on VMware virtual environment

In order to run the mapping on a database that is running on VMware
virtual disks, make sure to add the virtual server to Unisphere. You do this by
clicking UI Hosts => Virtual Servers on the Unisphere for VMAX GUI and then
clicking Add VM Server. In addition, you need to set the parameter disk
EnableUUID = "TRUE" in the ESX server. You do this by clicking Edit VM
settings on the vSphere client.

Storage statistics collection
DSA gets its storage statistics directly from Performance Analyzer, thereby keeping
the DSA and PA storage views consistent.

Support matrix

6 Database Storage Ana lyzer Tec hnic a l Notes

Support matrix
 Storage platforms: Symmetrix systems running Enginuity 5671 – 5876, or

VMAX systems running HYPERMAX OS 5977 or higher

 Oracle version 10g or higher

 Operating systems (monitored database server for Oracle):

o AIX version 5.2 or higher (64-bit)

o SUN Solaris 10 or higher (64-bit)

o Linux Red Hat 5 or higher (64-bit)

o SUSE Linux Enterprise Server

o Oracle Linux 5 or higher

o HP UX Itanium version 11.23 or higher

 The monitored database must have an Oracle diagnostic pack license.

 SQL Server 2008 or higher

 Virtual environment: VMware Virtual disks VMDK & RDM. Other virtual
environments (Solaris containers, AIX VIO, VPLEX and others) are not
supported.

 10GB is required on the monitored database host for storing the mapping
output.

Creating guest user
The following example illustrates the commands used by DSA to create the DSA
database guest user.

Note: there is no need to manually run this script to create the database user.
Instead, it can be run as part of the add environment process. This can be done via
Unisphere for VMAX console. For instructions, refer to Unisphere help system.

It is recommend that you use the most up to date script from DSA as opposed to
taking it from here.

Creating guest user

 7 Database Storage Ana lyzer Tec hnic a l Notes

For Oracle

-- Creation script of EMC DBC's guest user.

-- Creation script of EMC DBC's guest user.

-- Before running the script please:

-- Replace â€œ$EMC_Unisphere_USERâ€• with the real name of

the Database guest user

-- Replace â€œ$EMC_Unisphere_PASSâ€œ with the userâ€™s

password

declare

 sqlStr varchar2(200);

begin

 sqlStr := 'create user $EMC_Unisphere_USER identified by

$EMC_Unisphere_PASS';

 execute immediate sqlStr;

end;

/

--Create the new user

--create user $EMC_Unisphere_USER identified by

$EMC_Unisphere_USER_PASS;

grant connect to $EMC_Unisphere_USER;

GRANT SELECT ON dba_segments TO $EMC_Unisphere_USER;

GRANT SELECT ON dba_tab_partitions TO $EMC_Unisphere_USER;

GRANT SELECT ON dba_tab_subpartitions TO

$EMC_Unisphere_USER;

GRANT SELECT ON dba_tables TO $EMC_Unisphere_USER;

GRANT SELECT ON dba_ind_columns TO $EMC_Unisphere_USER;

GRANT SELECT ON dba_part_key_columns TO $EMC_Unisphere_USER;

GRANT SELECT ON dba_data_files TO $EMC_Unisphere_USER;

GRANT SELECT ON dba_cons_columns TO $EMC_Unisphere_USER;

GRANT SELECT ON dba_tab_columns TO $EMC_Unisphere_USER;

GRANT SELECT ON dba_indexes TO $EMC_Unisphere_USER;

GRANT SELECT ON dba_part_tables TO $EMC_Unisphere_USER;

GRANT SELECT ON dba_col_comments TO $EMC_Unisphere_USER;

GRANT SELECT ON dba_lobs TO $EMC_Unisphere_USER;

GRANT SELECT ON dba_free_space TO $EMC_Unisphere_USER;

GRANT SELECT ON dba_temp_files TO $EMC_Unisphere_USER;

GRANT SELECT ON dba_tablespaces TO $EMC_Unisphere_USER;

GRANT SELECT ON dba_tab_comments TO $EMC_Unisphere_USER;

GRANT SELECT ON obj$ TO $EMC_Unisphere_USER;

GRANT SELECT ON syn$ TO $EMC_Unisphere_USER;

GRANT SELECT ON view$ TO $EMC_Unisphere_USER;

GRANT SELECT ON user$ TO $EMC_Unisphere_USER;

GRANT SELECT ON v_$tempfile TO $EMC_Unisphere_USER;

Creating guest user

8 Database Storage Ana lyzer Tec hnic a l Notes

GRANT SELECT ON v_$event_name TO $EMC_Unisphere_USER;

GRANT SELECT ON v_$sqlarea TO $EMC_Unisphere_USER;

GRANT SELECT ON v_$database TO $EMC_Unisphere_USER;

GRANT SELECT ON V_$PARAMETER TO $EMC_Unisphere_USER;

GRANT SELECT ON v_$instance TO $EMC_Unisphere_USER;

GRANT SELECT ON gv_$instance TO $EMC_Unisphere_USER;

GRANT SELECT ON gv_$database TO $EMC_Unisphere_USER;

GRANT SELECT ON gv_$filestat TO $EMC_Unisphere_USER;

GRANT SELECT ON gv_$tempfile TO $EMC_Unisphere_USER;

GRANT SELECT ON gv_$tempstat TO $EMC_Unisphere_USER;

grant select on gv_$system_event to $EMC_Unisphere_USER;

GRANT SELECT ON gv_$active_session_history TO

$EMC_Unisphere_USER;

GRANT SELECT ON gv_$segstat TO $EMC_Unisphere_USER;

GRANT SELECT ON dba_hist_active_sess_history TO

$EMC_Unisphere_USER;

GRANT SELECT ON dba_extents TO $EMC_Unisphere_USER;

-- These permission are required for the script

GRANT SELECT ON DBA_HIST_FILESTATXS TO $EMC_Unisphere_USER;

GRANT SELECT ON DBA_HIST_TEMPSTATXS TO $EMC_Unisphere_USER;

GRANT SELECT ON dba_hist_snapshot TO $EMC_Unisphere_USER;

GRANT SELECT ON ts$ TO $EMC_Unisphere_USER;

GRANT SELECT ON sys_objects TO $EMC_Unisphere_USER;

GRANT SELECT ON seg$ TO $EMC_Unisphere_USER;

GRANT SELECT ON file$ TO $EMC_Unisphere_USER;

--10 and up

GRANT SELECT ON gv_$waitclassmetric_history TO

$EMC_Unisphere_USER;

GRANT SELECT ON gv_$system_wait_class TO

$EMC_Unisphere_USER;

GRANT SELECT ON gv_$sysmetric_history TO

$EMC_Unisphere_USER;

GRANT SELECT ON GV_$LOGFILE TO $EMC_Unisphere_USER;

GRANT SELECT ON GV_$LOG TO $EMC_Unisphere_USER;

GRANT SELECT ON GV_$PARAMETER TO $EMC_Unisphere_USER;

GRANT SELECT ON gv_$services TO $EMC_Unisphere_USER;

GRANT SELECT ON dba_part_indexes TO $EMC_Unisphere_USER;

GRANT SELECT ON dba_ind_partitions TO $EMC_Unisphere_USER;

GRANT SELECT ON dba_ind_subpartitions TO

$EMC_Unisphere_USER;

GRANT SELECT ON gv_$filestat TO $EMC_Unisphere_USER;

GRANT SELECT ON gv_$sysstat TO $EMC_Unisphere_USER;

Creating guest user

 9 Database Storage Ana lyzer Tec hnic a l Notes

-- Create synon

create synonym $EMC_Unisphere_USER.dbc_obj$ for obj$;

create synonym $EMC_Unisphere_USER.dbc_syn$ for syn$;

create synonym $EMC_Unisphere_USER.dbc_view$ for view$;

create synonym $EMC_Unisphere_USER.dbc_user$ for user$;

create synonym $EMC_Unisphere_USER.dbc_ts$ for ts$;

create synonym $EMC_Unisphere_USER.dbc_sys_objects for

sys_objects;

create synonym $EMC_Unisphere_USER.dbc_seg$ for seg$;

create synonym $EMC_Unisphere_USER.dbc_file$ for file$;

--10,11 only

declare

 x number;

begin

 select substr(version,0,2) into x from v$instance;

 if (x < 12) then

 execute immediate 'create or replace view dbc_$kccle as

select * from x$kccle';

 execute immediate 'grant select on dbc_$kccle to

$EMC_Unisphere_USER';

 execute immediate 'create or replace synonym

$EMC_Unisphere_USER.dbc_$kccle for sys.dbc_$kccle';

 end if;

end;

/

-- 12 only

declare

 x number;

 v_name varchar (200);

begin

 select substr(version,0,2) into x from v$instance;

 if (x >= 12) then

 execute immediate 'select distinct cdb from

gv$database' into v_name;

 if (v_name = 'YES') then

 execute immediate 'grant select on gv_$pdbs to

$EMC_Unisphere_USER';

 execute immediate 'select distinct name from gv$pdbs

where name = ''PDB$SEED''' into v_name;

 execute immediate 'alter user $EMC_Unisphere_USER

SET CONTAINER_DATA = all CONTAINER = CURRENT';

 end if;

 end if;

 exception when NO_DATA_FOUND then

 null;

end;

Creating guest user

10 Database Storage Ana lyzer Tec hnic a l Notes

/

--for 11g and above only

N

declare

 x number;

begin

 select substr(version,0,2) into x from v$instance;

 if (x >= 11) then

 --execute immediate 'grant SELECT ON gv_$iostat_function

TO $EMC_Unisphere_USER';

 execute immediate 'GRANT SELECT ON gv_$iostat_file TO

$EMC_Unisphere_USER';

 end if;

end;

/

create or replace view $EMC_Unisphere_USER.dbc_segments as

 select o.*,

-- Get table name - If the object is a table or

cluster(including partitions) we use its name, otherwise we

use the table name from the index join or lob join

 case when segment_type liKE '%TABLE%' or

segment_type='CLUSTER' OR OBJECT_ID<0 then o.SEGMENT_NAME

else nvl(i.table_name, l.table_name) end table_name,

-- Get owner - If the object is a table or cluster(including

partitions) we use its owner, otherwise we use the table

name from the index join or lob join

 case when segment_type liKE '%TABLE%' or

segment_type='CLUSTER' OR OBJECT_ID<0 then o.owner else

nvl(i.owner, l.owner) end table_owner,

-- Get table id - If the object is a table or cluster we use

its id

-- If the object is a partition we find the id using

analytic function from the dbc_obj$ table

-- If the object is a index of some sort we get it from the

joined index query

-- If the object is a lob of some sort we get it from the

joined lob query

 case when segment_type liKE '%TABLE' or

segment_type='CLUSTER' OR OBJECT_ID<0 then o.object_id

 when segment_type like 'TABLE%PARTITION%' then

 first_value(object_id) over(partition by

o.segment_name, o.owner,

 case when segment_type like '%TABLE%' then 1

 when segment_type like '%INDEX%' then 2

 when segment_type like '%LOB%' then 3

 else 4

 end

 order by decode(segment_type,'TABLE',1,2))

 when segment_type like '%INDEX%' and i.table_id is not

null then i.table_id

 when segment_type like 'LOB%' then l.table_id

 end table_id,

Creating guest user

 11 Database Storage Ana lyzer Tec hnic a l Notes

-- Get parent object_id

 case when segment_type liKE '%PARTITION%' then

 first_value(object_id) over(partition by o.segment_name,

o.owner,

 case when segment_type like '%TABLE%' then 1

 when segment_type like '%INDEX%' then 2

 when segment_type like '%LOB%' then 3

 else 4

 end)

 else

 o.object_id

 end parent_object_id,

 case when column_name is not null then column_name

 when segment_type like '%INDEX%' then (select

column_name

 from dba_lobs

l

 where

l.table_name=i.table_name

 and

l.index_name=o.segment_name

 and

l.owner=o.owner)

 else null end lob_column_name

 from

 (select o.obj# object_id, o.dataobj# data_object_id,

s.OWNER, S.SEGMENT_NAME,s.segment_type, S.PARTITION_NAME,

 S.TABLESPACE_NAME,nvl(S.bYTES/1024/1024,0)

SEGMENT_SIZE , o.ctime creation_date, O.mtime

LAST_DDL_TIME, s.extents

 from dba_segments s,

 $EMC_Unisphere_USER.dbc_obj$ o,

 $EMC_Unisphere_USER.dbc_user$ u

 where o.name= s.segment_name

 and o.name not like 'BIN$%'

 and u.user#=o.owner#

 and u.name= s.owner

 and

nvl(o.subname,'********')=nvl(s.partition_name,'********')

 and (

 (s.segment_type IN ('TABLE', 'NESTED TABLE') and

o.type#=2)

 or

 (s.segment_type IN ('LOBINDEX', 'INDEX') and

o.type#=1)

 or

 (s.segment_type IN ('CLUSTER') and o.type#=3)

 or

 (s.segment_type IN ('TABLE PARTITION') and

o.type#=19)

 or

Creating guest user

12 Database Storage Ana lyzer Tec hnic a l Notes

 (s.segment_type IN ('INDEX PARTITION') and

o.type#=20)

 or

 (s.segment_type IN ('TABLE SUBPARTITION') and

o.type#=34)

 or

 (s.segment_type IN ('INDEX SUBPARTITION') and

o.type#=35)

 or

 (s.segment_type IN ('LOBSEGMENT') and o.type#=21)

 or

 (s.segment_type IN ('LOB PARTITION') and

o.type#=40)

 or

 (s.segment_type IN ('LOB SUBPARTITION') and

o.type#=41))

 UNION ALL

 select o.obj# object_id,o.dataobj# data_object_id,

u.name owner, o.name SEGMENT_NAME,decode(o.type#, 1,

'INDEX', 2,'TABLE', 21, 'LOBSEGMENT') segment_type, null

PARTITION_NAME,

null TABLESPACE_NAME,0 SEGMENT_SIZE, o.ctime creation_date,

O.mtime LAST_DDL_TIME, null extents

 from $EMC_Unisphere_USER.dbc_obj$ o,

 $EMC_Unisphere_USER.dbc_user$ u

 where

 o.dataobj# is null

 and o.name not like 'BIN$%'

 and u.user#=o.owner#

 and o.type# IN (1,2,21)

) o

-- Join to index query (get table_name+table_owner+table_id

from index table)

 left outer join (select i.index_name, i.owner,

i.table_name, o.obj# table_id

 from $EMC_Unisphere_USER.dbc_obj$

o,

 $EMC_Unisphere_USER.dbc_user$ u,

 dba_indexes i

 where i.table_name=o.name

 and i.owner=u.name

 and linkname is null

 and u.user#=o.owner#

 and

o.type# in(2,3)) i on (i.index_name=o.SEGMENT_NAME and

i.owner=o.owner)

-- Join to lob query (get table_name+table_owner+table_id

from lob table)

 left outer join (select l.segment_name, l.owner,

l.table_name, o.obj# table_id, column_name

 from $EMC_Unisphere_USER.dbc_obj$

o,

Creating guest user

 13 Database Storage Ana lyzer Tec hnic a l Notes

 $EMC_Unisphere_USER.dbc_user$ u,

 dba_lobs l

 where l.table_name=o.name

 and l.owner=u.name

 and linkname is null

 and u.user#=o.owner#

 AND

O.TYPE# IN(2,3)) L ON (L.SEGMENT_NAME=O.SEGMENT_NAME AND

L.OWNER=O.OWNER);

/

For SQL Server

-- Creation script of EMC EMC_Unisphere_USER guest user.

create login $EMC_Unisphere_USER WITH PASSWORD =

'$EMC_Unisphere_PASS';

Grant view server state to $EMC_Unisphere_USER;

/

Grant view any definition to $EMC_Unisphere_USER;

/

--To enable monitoring of object level data, EMC Unispahere

DSA uses the â€œdbcc extentinfoâ€• function.

--The â€œdbcc extentinfoâ€• requires SA privileges.

EXEC sp_addsrvrolemember '$EMC_Unisphere_USER', 'sysadmin';

/*

--IF not using sa then we should use this:

DECLARE

 @LoginName VARCHAR(128),

 @UserName VARCHAR(128),

 @DatabaseName VARCHAR(100),

 @SQLScript VARCHAR(6000)

SET @LoginName = '$EMC_Unisphere_USER' -- Can be Windows

login such as 'DOMAINLoginName'

SET @UserName = '$EMC_Unisphere_USER' -- Many

times the same as the LoginName

BEGIN

 DECLARE DatabaseCursor CURSOR FOR

 SELECT [name] from sys.databases where state

= 0

 ORDER BY [name]

Creating guest user

14 Database Storage Ana lyzer Tec hnic a l Notes

 OPEN DatabaseCursor

 FETCH NEXT FROM DatabaseCursor INTO @DatabaseName

 WHILE @@FETCH_STATUS = 0

 BEGIN

 PRINT 'Updating Database: ' +

@DatabaseName + ''

 SET @SQLScript = '

 USE [' + @DatabaseName + ']

 IF NOT EXISTS (SELECT * FROM

[' + @DatabaseName + '] ..sysusers WHERE [name] = ''' +

@UserName + ''')

 EXEC SP_ADDUSER '''

+ @LoginName + ''',''' + @UserName + ''''

-- PRINT @SQLScript

 EXEC (@SQLScript)

 FETCH NEXT FROM DatabaseCursor INTO

@DatabaseName

 END

 CLOSE DatabaseCursor

 DEALLOCATE DatabaseCursor

END;

*/

